有理函数积分

1:∫xdx/(x+1)(x+2)(x+3)=∫[2/x+2-1/2/x+1-3/2/x+3]dx的详细过程!主要是分子是如何求得?2.∫3/x^3+1=∫1/x+1+(... 1:∫xdx/(x+1)(x+2)(x+3)=∫[2/x+2-1/2/x+1-3/2/x+3]dx的详细过程!主要是分子是如何求得?
2.∫3/x^3+1=∫1/x+1+(-x)=2/x^2-x+1的详细过程!主要是分子是如何求得?
请高手帮忙总结一下有理函数积分的规律!让我明白有理函数积分!拜托!谢谢!
展开
百了居士
2008-05-08 · TA获得超过1.5万个赞
知道大有可为答主
回答量:2683
采纳率:0%
帮助的人:0
展开全部
有理函数积分主要是部分分式的分解:
设Q(x)=c(x-a)^α...(x-b)^β(x^2+px+q)^λ...(x^2+rx+s)^μ
(其中p^2-4q<0,...,r^2-4s<0.).
那么真分式P(x)/Q(x)可以分解成如下部分分式之和:
P(x)/Q(x)=A1/(x-a)^α+A2/(x-a)^(α-1)+...+A[α]/(x-a)+...+
+B1/(x-b)^β+B2/(x-b)^(β-1)+...+B[β]/(x-b)+
(M1x+N1)/(x^2+px+q)^λ+...+(M[λ]x+N[λ])/(x^2+px+q)+......+
(R1x+S1)/(x^2+rx+s)^μ+...+(R[μ]x+S[μ])/(x^2+rx+s).

x/[(x+1)(x+2)(x+3)]=A/(x+1)+B/(x+2)+C/(x+3),
x=A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2).
令x=-1,得A=-1/2,
令x=-2,得B=2,
令x=-3,得C=-3/2,
x/[(x+1)(x+2)(x+3)]=(-1/2)*1/(x+1)+2/(x+2)-(3/2)*1/(x+3),

或由x=(A+B+C)x^2+(5A+4B+3C)x+(6A+3B+2C),
比较系数得A+B+C=0,5A+4B+3C=1,6A+3B+2C=0,
解出A,B,C.

3/(x^3+1)=1/(x+1)(x^2-x+1)=A/(x+1)+(Mx+N)/(x^2-x+1),
3=A(x^2-x+1)+(Mx+N)(x+1).
令x=-1,得A=1,
(Mx+N)(x+1)=3-A(x^2-x+1)=-x^2+x-2=-(x-2)(x+1),
Mx+N=-x+2,M=-1,N=2.
3/(x^3+1)=1/(x+1)-(x-2)/(x^2-x+1).
wzzju
2008-05-08 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2125
采纳率:0%
帮助的人:3611万
展开全部
这都是是待定系数法,
设:x/(x+1)(x+2)(x+3)=A/(x+1)+B/(x+2)+C/(x+3)
然后右边通分,与左边比较,就可以解出A,B,C,再带回去,就是你的那个式子。
第二题因为:x^3+1=(x+1)(x^2-x+1)
就设3/(x^3+1)=A/(x+1)+(Bx+C)/(x^2-x+1)
之后同理~
这个规律嘛,就是把分母分解因式,然后把它拆开,每一项的分子次数比分母少一次,之后待定系数法~
最后分解完并且解出系数后,都是形如:
A/(x+m),和(px+q)/(x^2+mx+n)之类,然后运用公式求解~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
钱倚沐梓欣
2020-05-24 · TA获得超过4083个赞
知道大有可为答主
回答量:3117
采纳率:27%
帮助的人:432万
展开全部
有理函数积分主要是部分分式的分解:
设Q(x)=c(x-a)^α...(x-b)^β(x^2+px+q)^λ...(x^2+rx+s)^μ
(其中p^2-4q<0,...,r^2-4s<0.).
那么真分式P(x)/Q(x)可以分解成如下部分分式之和:
P(x)/Q(x)=A1/(x-a)^α+A2/(x-a)^(α-1)+...+A[α]/(x-a)+...+
+B1/(x-b)^β+B2/(x-b)^(β-1)+...+B[β]/(x-b)+
(M1x+N1)/(x^2+px+q)^λ+...+(M[λ]x+N[λ])/(x^2+px+q)+......+
(R1x+S1)/(x^2+rx+s)^μ+...+(R[μ]x+S[μ])/(x^2+rx+s).
x/[(x+1)(x+2)(x+3)]=A/(x+1)+B/(x+2)+C/(x+3),
x=A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2).
令x=-1,得A=-1/2,
令x=-2,得B=2,
令x=-3,得C=-3/2,
x/[(x+1)(x+2)(x+3)]=(-1/2)*1/(x+1)+2/(x+2)-(3/2)*1/(x+3),
或由x=(A+B+C)x^2+(5A+4B+3C)x+(6A+3B+2C),
比较系数得A+B+C=0,5A+4B+3C=1,6A+3B+2C=0,
解出A,B,C.
3/(x^3+1)=1/(x+1)(x^2-x+1)=A/(x+1)+(Mx+N)/(x^2-x+1),
3=A(x^2-x+1)+(Mx+N)(x+1).
令x=-1,得A=1,
(Mx+N)(x+1)=3-A(x^2-x+1)=-x^2+x-2=-(x-2)(x+1),
Mx+N=-x+2,M=-1,N=2.
3/(x^3+1)=1/(x+1)-(x-2)/(x^2-x+1).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友cddcfc3
2008-05-08 · TA获得超过11.2万个赞
知道大有可为答主
回答量:1.3万
采纳率:0%
帮助的人:2.5亿
展开全部
http://zhidao.baidu.com/question/52143490.html
这是以前我回答过的一个问题,跟你提的问题很相似.
关于有理函数的积分方法,在那个回答中我以例题形式写了出来,你可以参考对照一下.
至于你的提问中的积分,可以作为练习,看看自己是否真的掌握了方法.^_^
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式