函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为

函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为M(5π/12,3),N(11π/12,-3)(1)求此... 函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为M(5π/12,3),N(11π/12,-3)
(1)求此函数的解析式
(2)f(x)的单调增区间
(3)f(x)的对称轴和对称中心
(4)f(x)的最小值以及取得最小值时的x的集合
(1)(2)问只写答案,(3)(4)写过程
展开
韩增民松
2013-03-16 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2739万
展开全部
函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为M(5π/12,3),N(11π/12,-3)
(1)求此函数的解析式
(2)f(x)的单调增区间
(3)f(x)的对称轴和对称中心
(4)f(x)的最小值以及取得最小值时的x的集合

(1)解析:∵函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π/2),
∴A=3,T/2=11π/12-5π/12=π/2==>T=π==>w=2
∴f(x)=3sin(2x+φ)==> f(5π/12)=sin(5π/6+φ)=1==>5π/6+φ=π/2==>φ=-π/3
∴f(x)=3sin(2x-π/3)
(2)解析:∵f(x)=3sin(2x-π/3),单调减区间为[5π/12,11π/12]
∴单调增区间为[kπ-π/12,kπ+5π/12]
(3)解析:∵f(x)=3sin(2x-π/3),
对称轴为kπ-π/12或kπ+5π/12
对称中心为kπ-π/3或kπ+π/6
(4)解析:∵f(x)=3sin(2x-π/3),
2x-π/3=2kπ-π/2==>x=kπ-π/12
f(x)的最小值为-3,取得最小值时x=kπ-π/12
bhtj27
2013-03-16 · 超过42用户采纳过TA的回答
知道小有建树答主
回答量:185
采纳率:0%
帮助的人:112万
展开全部
(1) y=3sin(2x-π/3)
(2) [kπ-π/12,kπ+5π/12]
(3) sin对称轴为kπ+π/2 对称中心kπ 令2x-π/3分别等于上述值即可
(4) 最小值-3 令2x-π/3等于2kπ-π/2
来自:求助得到的回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式