
2个回答
展开全部
S6=a1+a2+a3+a4+a5+a6=a1+a2+a3+(a1+3d)+(a2+3d)+(a3+3d)=S3+S3+9d=2S3+9d(d为公差)
也就是S6=2S3+9d ,又由题干可知,S3=1/3*S6代入可得,S6=27d
同样方法,S12=S6+a7+a8+a9+a10+a11+a12=S6+S6+6d*6=2S6+36d=2*27d+36d=90d
所以S6/S12=27d/90d=3/10
也就是S6=2S3+9d ,又由题干可知,S3=1/3*S6代入可得,S6=27d
同样方法,S12=S6+a7+a8+a9+a10+a11+a12=S6+S6+6d*6=2S6+36d=2*27d+36d=90d
所以S6/S12=27d/90d=3/10
展开全部
基本的解题思路:
假设等差数列{an}的第一个元素为a1,等差的差为x,即an=a1+(n-1)*x,则:
Sn=n*a1+[n*(n-1)/2]*x;
S3/S6={3*a1+[3*(3-1)/2]*x}/{6*a1+[6*(6-1)/2]*x}=1/3,可得a1=2*x;
S6/S12={6*a1+[6*(6-1)/2]*x}/{12*a1+[12*(12-1)/2]*x}={27*x}/{90*x}=3/10。
如果对等差数列非常熟悉,可以有很简单、快速的解题方法。想用快速方法,必须通过题海战术,好好锻炼,直到你看到这些题目,大脑里立马就能反映出这些公式。
S3=3*a1+x*3*(3-1)/2=3*a1+3*x=9*x;
S9-S3=9*a1+x*9*(9-1)/2-(3*a1+3*x)=6*a1+33*x=45*x;
所有S9-S3=5*S3。
假设等差数列{an}的第一个元素为a1,等差的差为x,即an=a1+(n-1)*x,则:
Sn=n*a1+[n*(n-1)/2]*x;
S3/S6={3*a1+[3*(3-1)/2]*x}/{6*a1+[6*(6-1)/2]*x}=1/3,可得a1=2*x;
S6/S12={6*a1+[6*(6-1)/2]*x}/{12*a1+[12*(12-1)/2]*x}={27*x}/{90*x}=3/10。
如果对等差数列非常熟悉,可以有很简单、快速的解题方法。想用快速方法,必须通过题海战术,好好锻炼,直到你看到这些题目,大脑里立马就能反映出这些公式。
S3=3*a1+x*3*(3-1)/2=3*a1+3*x=9*x;
S9-S3=9*a1+x*9*(9-1)/2-(3*a1+3*x)=6*a1+33*x=45*x;
所有S9-S3=5*S3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询