质心与形心以及重心的区别?
质心与形心以及重心的区别主要体现在三者各自关联的内容不同。
详细解释如下:
1、重心:物体的重力的合力作用点称为物体的重心。(与组成该物体的物质有关)
2、形心:物体的几何中心。(只与物体好饥棚的几何形状和尺寸有关,与组成该物体的物质无关)。
3、质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。
4、三者之间的联系与区别:
一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。
与重心不同的是,质心不一定要在有重力场的系统中。除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。
扩展资料
寻找重心方法
a.悬挂法
只适用于薄板(不一定均匀)。首先找一根细绳,在物体上找一点,用绳悬挂,划出物体静止后的重力线,同理再找一点悬挂,两条重力线的交点就是物体重心。
b.支撑法
只适用于细棒(不一定均匀)。用一个支点支撑物体,不断变化位置,越稳定的位置,越接近重心。
一种可能的变通方式是肢戚用两个支点支撑,然后施加较小的力使两个支点靠近,因为离重心近的支点摩擦力会大,所以物体会随之移动,使另一个支点友则更接近重心,如此可以找到重心的近似位置。
c.针顶法 同样只适用于薄板。用一根细针顶住板子的下面,当板子能够保持平衡,那么针顶的位置接近重心。
与支撑法同理,可用3根细针互相接近的方法,找到重心位置的范围,不过这就没有支撑法的变通方式那样方便了。
d.用铅垂线找重心(任意一图形,质地均匀)
用绳子找其一端点悬挂,后用铅垂线挂在此端点上(描下来)。而后用同样的方法作另一条线。两线交点即其重心。
参考资料:百度百科:质心
2、形心:物体的几何中心。(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。
3、一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。
4、当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形的形心盯橡茄;
5、只有一个对称凯察轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
6、对于一些常见的简单图形,如圆形、矩形、三角形、正方形等,其形心都是熟知的,利用这些简单图形的形心,由叠加法即可确定由这些简单图形组成的组合图形的 形心如则。
2、形心:物体的几何中心。(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。
3、一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。
4、当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形的形心;
5、只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
6、对于一晌镇些常见的简单图形,如圆形、矩形、三角形、正方形等,其形心都是熟知的,利用这些简单图形的形心,由叠加法即可确定由这渣谨睁些简单图形组成的组合图形的 形心。
质心和重嫌含腔心的关系就好象质量与重量的关系
形心是物体的几何中心(只与物老灶体的几何形状和尺寸有关,与组成该物体的物质无关)