如图,平行四边形ABCD中,AB=5,AD=8,∠A=120°,过点A任意引直线MN与BC相交,设顶点B,C,D,到MN的距离之

和为d,求d的最大值。本题其实是没有图的。... 和为d,求d的最大值。
本题其实是没有图的。
展开
sammon0515
2013-03-19 · TA获得超过1830个赞
知道小有建树答主
回答量:645
采纳率:66%
帮助的人:361万
展开全部
解:
按照题意我们画出平行四边形ABCD,过点A的直线MN交BC于点E,过点D,B,C分别作直线MN的垂线,垂足记为G,H,F(F在AE的延长线上)
已知∠A=120°,则∠B=∠D=60°,我们设∠ADG=∠EBH=a°(0≤a≤60),
那么,DG=8cosa,CF=8cosa-5cos(60-a),BH=BEcosa=(BC-CE)cosa=(8-[8cosa-5cos(60-a)]/cosa)cosa,
那么d=8cosa+8cosa-5cos(60-a)+(8-[8cosa-5cos(60-a)]/cosa)cosa;
看到这里LZ不要觉得好像很复杂,这道题的关键就是用未知数把三段长度表达出来,也许以前我们在求极值的时候习惯把X当做未知变量,但在这道题目里a是变量也无妨,而且它的取值范围也是确定的,上式化简后我们得到一个非常简单的式子d=16cosa,当0≤a≤60时,a=0cosa取得最大值,即d=16,也就是当直线MN⊥BC时,d有最大值。
追问
你会求最小值吗?
追答
在0≤a≤60范围内,cos函数是递减函数,那么最小值就是当a取60°的时候,最小值为8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式