设函数f(x)=e^x-a(x+1)(a>0,e为自然对数的底数),若a>0,fx大于等于0对任意的x属于R恒成立.求实数a的最大值

hbc3193034
2013-03-18 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
f(x)=e^x-a(x+1)(a>0),则
f'(x)=e^x-a,
x>lna时f'(x)>0,f(x)↑;x<lna时f'(x)<0,f(x)↓。
∴f(x)>=f(lna)=a-alna-a=-alna,
f(x)>=0对任意的x属于R恒成立,
<==>-alna>=0,
<==>lna<=0,
∴实数a的最大值是1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式