高数求dy/dx的题目,请高手解答,具体题目看图
3个回答
展开全部
1/2ln(x²+y²)=arctany/x
两边同时对x求导,得
1/2 *1/(x²+y²)*(2x+2y*y')=1/[1+(y/x)²]* (y'x-y)/x²
x+yy'=y'x-y
(x-y)y'=x+y
y'=(x+y)/(x-y)
所以
dy=(x+y)/(x-y)dx
两边同时对x求导,得
1/2 *1/(x²+y²)*(2x+2y*y')=1/[1+(y/x)²]* (y'x-y)/x²
x+yy'=y'x-y
(x-y)y'=x+y
y'=(x+y)/(x-y)
所以
dy=(x+y)/(x-y)dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ln√(x^2+y^2)=arctany/x
1/2ln(x^2+y^2)=arctany/x
ln(x^2+y^2)=2arctany/x 两边对x求导得
1/(x^2+y^2)*(2x+2yy')=2*1/(1+[y/x)^2]*(y'x-y)/x^2
(2x+2yy')/(x^2+y^2)=2(y'x-y)/x^2 /[1+(y/x)^2]
=2(y'x-y)/(x^2+y^2)
2x+2yy'=2(y'x-y)
x+yy'=y'x-y
yy'-xy'=-x-y
y'=(-x-y)/(y-x)
=(x+y)/(x-y)
即
dy=(x+y)dx/(x-y)
1/2ln(x^2+y^2)=arctany/x
ln(x^2+y^2)=2arctany/x 两边对x求导得
1/(x^2+y^2)*(2x+2yy')=2*1/(1+[y/x)^2]*(y'x-y)/x^2
(2x+2yy')/(x^2+y^2)=2(y'x-y)/x^2 /[1+(y/x)^2]
=2(y'x-y)/(x^2+y^2)
2x+2yy'=2(y'x-y)
x+yy'=y'x-y
yy'-xy'=-x-y
y'=(-x-y)/(y-x)
=(x+y)/(x-y)
即
dy=(x+y)dx/(x-y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询