线性代数题不会做,求大神帮忙~~~~

设A,B,P均为n阶方阵其中p为可逆矩阵,A,B满足条件A²-A-2E=0,B=PAP^(-1),证明:B^(k)=PA^(k)P^(-1),k€Z... 设A,B,P均为n阶方阵其中p为可逆矩阵,A,B满足条件A²-A-2E=0,B=PAP^(-1),证明:B^(k)=PA^(k)P^(-1),k€Z+及B+E可逆并求(B+E)^(-1). 展开
lry31383
高粉答主

2013-03-21 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
B^k = PAP^-1PAP^-1PAP^-1......PAP^-1 = PA^kP^-1 (由结合律及P^-1P=E即得)

B+E = PAP^-1 +E = P(A+E)P^-1
由于 A^2-A-2E=(A-2)(A+E)=0
由此得不出A+E可逆, 故得不出B+E可逆
题目没问题吧
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式