高中数学:已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*),求数列{an}的通项公式。
3个回答
展开全部
Sn=2an-n
s(n-1)=2a(n-1)-(n-1)
相减,得
an=Sn-s(n-1)=2an-2a(n-1)-1
an=2a(n-1)+1
an+1=2[a(n-1)+1]
这个数派察袜列{an+1}是等比数列
s1=2a1-1=a1
a1=1
首项=a1+1=2,公比尘激为2
所以
an+1=2*2^(n-1)
an=2^n -1
n=1时没隐也是成立的。
s(n-1)=2a(n-1)-(n-1)
相减,得
an=Sn-s(n-1)=2an-2a(n-1)-1
an=2a(n-1)+1
an+1=2[a(n-1)+1]
这个数派察袜列{an+1}是等比数列
s1=2a1-1=a1
a1=1
首项=a1+1=2,公比尘激为2
所以
an+1=2*2^(n-1)
an=2^n -1
n=1时没隐也是成立的。
追问
{an+1} 这个数列为什么是等比数列?
追答
an+1=2[a(n-1)+1]
[an+1]/[a(n-1)+1]=2
即公比为2.
展开全部
Sn-1=2an-1-(n-1) Sn-Sn-1=an=2(an-an-1)-1所以an-2an-1-1 设碧耐笑an k=u(an-1 k)再展开可得u=2 k=1 即an 1=2(an-1 1)所以an 1为等比数列,公比为2,a1 1=S1 1=1 1=2 所以亩族an 1=2*2的n-1次,所以an=2的n次悔含-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1+a1)*2^(n-1)-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询