2个回答
展开全部
求定积分【-1,1】∫(x⁶)/(√1-x²)dx=
解:被积函数是偶函数。
故原式=【0,1】2∫(x⁶)/(√1-x²)dx【令x=sinu,dx=cosudu;x=0时u=0;x=1时u=π/2】
=【0,π/2】2∫sin⁶ucos²udu=【0,π/2】2∫sin⁶u(1-sin²u)du=【0,π/2】2[∫sin⁶udu-∫sin⁸udu]
=【0,π/2】2[∫sin⁶udu+(sin⁷ucosu)/8-(7/8)∫sin⁶udu]=【0,π/2】2[(1/8)∫sin⁶udu+(sin⁷ucosu)/8]
=【0,π/2】(1/4)∫sin⁶udu=【0,π/2】(1/4)[-(sin⁵ucosu)/6+(5/6)∫sin⁴udu]
=【0,π/2】(5/24)∫sin⁴udu=【0,π/2】(5/24)[-(sin³ucosu)/4+(3/4)∫sin²udu]
=【0,π/2】(15/96)∫sin²udu=【0,π/2】(15/96)∫[(1-cos2u)/2]du
=【0,π/2】(15/96)[u-(1/2)∫cos2ud(2u)]=【0,π/2】(15/96)[u-(1/2)sin2u]
=(15/96)(π/2)=(15/192)π
【其中用了递推公式:∫sinⁿudu=-(sinⁿ⁻¹ucosu)/n+[(n-1)/n]∫sinⁿ⁻²udu】.
解:被积函数是偶函数。
故原式=【0,1】2∫(x⁶)/(√1-x²)dx【令x=sinu,dx=cosudu;x=0时u=0;x=1时u=π/2】
=【0,π/2】2∫sin⁶ucos²udu=【0,π/2】2∫sin⁶u(1-sin²u)du=【0,π/2】2[∫sin⁶udu-∫sin⁸udu]
=【0,π/2】2[∫sin⁶udu+(sin⁷ucosu)/8-(7/8)∫sin⁶udu]=【0,π/2】2[(1/8)∫sin⁶udu+(sin⁷ucosu)/8]
=【0,π/2】(1/4)∫sin⁶udu=【0,π/2】(1/4)[-(sin⁵ucosu)/6+(5/6)∫sin⁴udu]
=【0,π/2】(5/24)∫sin⁴udu=【0,π/2】(5/24)[-(sin³ucosu)/4+(3/4)∫sin²udu]
=【0,π/2】(15/96)∫sin²udu=【0,π/2】(15/96)∫[(1-cos2u)/2]du
=【0,π/2】(15/96)[u-(1/2)∫cos2ud(2u)]=【0,π/2】(15/96)[u-(1/2)sin2u]
=(15/96)(π/2)=(15/192)π
【其中用了递推公式:∫sinⁿudu=-(sinⁿ⁻¹ucosu)/n+[(n-1)/n]∫sinⁿ⁻²udu】.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询