如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm. . (
(2012�6�1衡阳)如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm.(1)求...
(2012�6�1衡阳)如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm.
(1)求证:BF是⊙O的切线.
(2)若AD=8cm,求BE的长.
(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由. 展开
(1)求证:BF是⊙O的切线.
(2)若AD=8cm,求BE的长.
(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由. 展开
展开全部
解:(1)∵AB是⊙O的直径,CD⊥AB,BF∥CD,
∴BF⊥AB,即BF是⊙O的切线;
(2)如图1,连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角);
又∵DE⊥AB
∴AD2=AE•AB;
∵AD=8cm,AB=10cm,
AE=6.4cm,
∴BE=AB-AE=3.6cm;
(3)连接BC.
四边形CBFD为平行四边形,则四边形ACBD是正方形.理由如下:
∵四边形CBFD为平行四边形,
∴BC∥FD,即BC∥AD;
∴∠BCD=∠ADC(两直线平行,内错角相等),
∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),
∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA;
又∵∠BDA=90°(直径所对的圆周角是直角),
∴∠CAD=∠BDA=90°,
∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O),如图2,
在△OBC和△ODA中,
∵OC=OD∠COB=∠DOA=90°OB=OA,
∴△OBC≌△ODA(SAS),
∴BC=DA(全等三角形的对应边相等),
∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形);
∵∠ACB=90°(直径所对的圆周角是直角),AC=AD,
∴四边形ACBD是正方形.
∴BF⊥AB,即BF是⊙O的切线;
(2)如图1,连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角);
又∵DE⊥AB
∴AD2=AE•AB;
∵AD=8cm,AB=10cm,
AE=6.4cm,
∴BE=AB-AE=3.6cm;
(3)连接BC.
四边形CBFD为平行四边形,则四边形ACBD是正方形.理由如下:
∵四边形CBFD为平行四边形,
∴BC∥FD,即BC∥AD;
∴∠BCD=∠ADC(两直线平行,内错角相等),
∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),
∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA;
又∵∠BDA=90°(直径所对的圆周角是直角),
∴∠CAD=∠BDA=90°,
∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O),如图2,
在△OBC和△ODA中,
∵OC=OD∠COB=∠DOA=90°OB=OA,
∴△OBC≌△ODA(SAS),
∴BC=DA(全等三角形的对应边相等),
∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形);
∵∠ACB=90°(直径所对的圆周角是直角),AC=AD,
∴四边形ACBD是正方形.
2013-03-28
展开全部
解:(1)∵AB是⊙O的直径,CD⊥AB,BF∥CD,
∴BF⊥AB,即BF是⊙O的切线;
(2)如图1,连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角);
又∵DE⊥AB
∴AD2=AE�6�1AB;
∵AD=8cm,AB=10cm,
AE=6.4cm,
∴BE=AB-AE=3.6cm;
3)连接BC.
四边形CBFD为平行四边形,则四边形ACBD是正方形.理由如下:
∵四边形CBFD为平行四边形,
∴BC∥FD,即BC∥AD;
∴∠BCD=∠ADC(两直线平行,内错角相等),
∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),
∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA;
又∵∠BDA=90°(直径所对的圆周角是直角),
∴∠CAD=∠BDA=90°,
∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O),如图2,
在△OBC和△ODA中,
∵ OC=OD∠COB=∠DOA=90°OB=OA,
∴△OBC≌△ODA(SAS),
∴BC=DA(全等三角形的对应边相等),
∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形);
∵∠ACB=90°(直径所对的圆周角是直角),AC=AD,
∴四边形ACBD是正方形.
∴BF⊥AB,即BF是⊙O的切线;
(2)如图1,连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角);
又∵DE⊥AB
∴AD2=AE�6�1AB;
∵AD=8cm,AB=10cm,
AE=6.4cm,
∴BE=AB-AE=3.6cm;
3)连接BC.
四边形CBFD为平行四边形,则四边形ACBD是正方形.理由如下:
∵四边形CBFD为平行四边形,
∴BC∥FD,即BC∥AD;
∴∠BCD=∠ADC(两直线平行,内错角相等),
∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),
∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA;
又∵∠BDA=90°(直径所对的圆周角是直角),
∴∠CAD=∠BDA=90°,
∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O),如图2,
在△OBC和△ODA中,
∵ OC=OD∠COB=∠DOA=90°OB=OA,
∴△OBC≌△ODA(SAS),
∴BC=DA(全等三角形的对应边相等),
∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形);
∵∠ACB=90°(直径所对的圆周角是直角),AC=AD,
∴四边形ACBD是正方形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询