高分悬赏!这个文章有点难不会翻译~求英语高手翻译!化学类文章,没有好心人帮我逐句翻译。翻译了还追加
DiuronadsorptionisothermsThedatacorrespondingtotheadsorptionofdiuronontoACatdifferent...
Diuron adsorption isotherms
The data corresponding to the adsorption of diuron onto AC at
different temperatures without pH control are shown in Fig. 2a–c.
As can be seen, they are well defined in the range studied, covering
up to around 55 lmol L1. The uptake of diuron increases significantly
with temperature in the whole range of concentration tested,
thus the observed effect of temperature on the adsorption capacity
of diuron does not follow the most common trend for adsorption.
This apparent endothermic behaviour has been interpreted in
terms of an increased planarity and diffusivity of the diuron molecules
linked to the easier desolvation of diuron molecules in solution
as temperature increases [10,11,27]. In a first approach, the
equilibrium isotherms of Fig. 2a can be considered as L-type, more
specifically L-3 subtype of Giles classification [12], indicating
favourable adsorption related to the low water solubility of diuron
and the occurrence of multilayer adsorption. The ever decreasing
slope and the plateau of the first part of the isotherm are found in
most cases of adsorption from dilute solutions. This pattern is representative
of a progressive occupation of the surface available for
adsorption. The saturation shown by the plateau has been interpreted
as the result of monolayer completion, although it does
not necessarily imply ordering in a close-packed layer of adsorbate.
The layer can also contain solvent molecules and adsorbate clusters,
and the filling of the sites available on the original surface can coexist
in some extent with the formation of multilayer or the filling of pores. The solute concentration at which the plateau of the isotherm
is fully developed decreases as temperature increases, thus
it varies from around 45 lmol L1 to around 30 lmol L1 for the
adsorption at 15 and 45 C, respectively. In a previous paper, Fontecha-
Cámara et al. [10] reported L-type isotherms for the adsorption
of diuron on activated carbon fiber and cloth at pH 7, whereas Bouras
et al. [9] reported S-type isotherms for the adsorption of diuron
on surfactant-modified pillared clays at pH 6. Thus, the formation of
multilayer seems to be conditioned by the nature of the adsorbent
surface and the effect of pH on the adsorbent-solute and adsorbatesolute
interactions.
The observation of the isotherms within the low concentration
range (Fig. 2b) shows that at 15–35 C they have a continuous concave
shape (L-3) whereas at 45 C the shape of the isotherm could
be even considered of S-3 type with an inflection at diuron concentration
around 2 lmol L1. Such shift at high temperatures would
suggest a higher contribution of cooperative adsorption, promoted
by the interactions between the solute and the adsorbate.
如果就网上软件直接翻译就不用麻烦各位了~我自己就能搞定。我需要能够读懂意思的,就是语序什么的要对,知道有点麻烦,翻译好了还要追加分得,保证满意 展开
The data corresponding to the adsorption of diuron onto AC at
different temperatures without pH control are shown in Fig. 2a–c.
As can be seen, they are well defined in the range studied, covering
up to around 55 lmol L1. The uptake of diuron increases significantly
with temperature in the whole range of concentration tested,
thus the observed effect of temperature on the adsorption capacity
of diuron does not follow the most common trend for adsorption.
This apparent endothermic behaviour has been interpreted in
terms of an increased planarity and diffusivity of the diuron molecules
linked to the easier desolvation of diuron molecules in solution
as temperature increases [10,11,27]. In a first approach, the
equilibrium isotherms of Fig. 2a can be considered as L-type, more
specifically L-3 subtype of Giles classification [12], indicating
favourable adsorption related to the low water solubility of diuron
and the occurrence of multilayer adsorption. The ever decreasing
slope and the plateau of the first part of the isotherm are found in
most cases of adsorption from dilute solutions. This pattern is representative
of a progressive occupation of the surface available for
adsorption. The saturation shown by the plateau has been interpreted
as the result of monolayer completion, although it does
not necessarily imply ordering in a close-packed layer of adsorbate.
The layer can also contain solvent molecules and adsorbate clusters,
and the filling of the sites available on the original surface can coexist
in some extent with the formation of multilayer or the filling of pores. The solute concentration at which the plateau of the isotherm
is fully developed decreases as temperature increases, thus
it varies from around 45 lmol L1 to around 30 lmol L1 for the
adsorption at 15 and 45 C, respectively. In a previous paper, Fontecha-
Cámara et al. [10] reported L-type isotherms for the adsorption
of diuron on activated carbon fiber and cloth at pH 7, whereas Bouras
et al. [9] reported S-type isotherms for the adsorption of diuron
on surfactant-modified pillared clays at pH 6. Thus, the formation of
multilayer seems to be conditioned by the nature of the adsorbent
surface and the effect of pH on the adsorbent-solute and adsorbatesolute
interactions.
The observation of the isotherms within the low concentration
range (Fig. 2b) shows that at 15–35 C they have a continuous concave
shape (L-3) whereas at 45 C the shape of the isotherm could
be even considered of S-3 type with an inflection at diuron concentration
around 2 lmol L1. Such shift at high temperatures would
suggest a higher contribution of cooperative adsorption, promoted
by the interactions between the solute and the adsorbate.
如果就网上软件直接翻译就不用麻烦各位了~我自己就能搞定。我需要能够读懂意思的,就是语序什么的要对,知道有点麻烦,翻译好了还要追加分得,保证满意 展开
展开全部
全文翻译如下:
Diuronadsorption isotherms
敌草隆吸附等温线
The data corresponding to the adsorption of diuron onto AC at different temperatures
without pH control are shown in Fig. 2a–c.
图 2a-c 展示了在没有控制酸碱度的情况下,AC在不同温度时对敌草隆的吸附量。
As can be seen, they are well defined in the range studied, covering up to around 55 lmol
L 1.
从各图可见,它们在研究所涉及的温度范围内都很完整,覆盖至大约 55 lmol L1 的范围。
The uptake of diuron increases significantly with temperature in the whole range ofconcentration tested, thus the observed effect of temperature on the adsorption
capacity of diuron does not follow the most common trend for adsorption.
在整个受测试的浓度范围内,敌草隆的吸附量都随着温度显着增加,因此,根据观察所得,温度对敌草隆吸附能力的影响,与最常见的吸附趋势不同。
This apparent endothermic behaviour has been interpreted in terms of an increasedplanarity and diffusivity of the diuron molecules linked to the easier desolvation of diuron molecules in solution as temperature increases [10,11,27].
这种明显的吸热表现,是由于溶液中的敌草隆份子在温度增加时更容易出现去溶剂化的情形,因而令敌草隆份子的平面性和扩散率都有所增加 [10,11,27]。
In a first approach, the equilibrium isotherms of Fig. 2a can be considered as L-type,more specifically L-3 subtype of Giles classification [12], indicating favourable
adsorption related to the low water solubility of diuron and the occurrence of
multilayer adsorption.
在第一次进行时,图 2a 的均衡等温线属于 L 类(更仔细而言则属 Giles 分类法中的 L-3 分类 [12]),因而显示出,敌草隆较低的水溶度和多层吸附现象令它有较好的吸附能力。
The ever decreasing slope and the plateau of the first part of the isotherm are found in
most cases of adsorption from dilute solutions.
该条等温线第一部份所呈现的坡度递减,并在高处转平的情形,是大部份稀薄溶液的常见吸附情形。
This pattern is representative of a progressive occupation of the surface available
for adsorption.
这个模式代表可供吸附的表面被逐渐占用。
The saturation shown by the plateau has been interpreted as the result of monolayercompletion, although it does not necessarily imply ordering in a close-packed
layer of adsorbate.
虽然等温线在高处转平所展现的饱和情况被理解为是单层吸附完成的结果,却不一定能显示出一层排列紧密的吸附物本身的序列情况。
The layer can also contain solvent molecules and adsorbate clusters, and the filling ofthe sites available on the original surface can coexist in some extent with the formation of multilayer or the filling of pores.
该层吸附物也可以包含有溶剂的份子和吸附物的份子群,而且,它们除了吸附在原有表面的可吸附位置之外,也可以形成一定程度的多层吸附物,或者填塞在孔洞中。
The solute concentration at which the plateau of the isotherm is fully developed decreasesas temperature increases, thus it varies from around 45 lmol L1 to around 30
lmol L1 for the adsorption at 15 and 45 [1]C, respectively.
当等温线在高处完全转平的时候,溶解物的浓度会随着温度增高而减少,即在15摄氏度和45摄氏度时,浓度分别为约45lmol L1至约 30 lmol L1。
In a previous paper, Fontecha-Cámara et al. [10] reported L-type isotherms for theadsorption of diuron on activated carbon fiber and cloth at pH 7, whereas
Bouras et al. [9] reported S-type isotherms for the adsorption of diuron on
surfactant-modified pillared clays at pH 6.
在过去的论文中,Fontecha-Cámara 等人 [10] 曾经报导:敌草隆在酸碱度为 7 时,对活性碳纤维和布料的吸附量呈现 L 类等温线;而 Bouras 等人 [9] 则报导敌草隆在酸碱度为 6 时,对于表面活性经过修改的柱状粘土的吸附量呈现S类等温线。
Thus, the formation of multilayer seems to be conditioned by the nature of the adsorbent surface
and the effect of pH on the adsorbent-solute and adsorbate solute interactions.
因此,多层吸附物的形成,似乎是受到吸附面的性质影响,而另一项影响因素则是酸碱度对已吸附的溶解物和尚待吸附的溶解物之间互动作用的影响。
The observation of the isotherms within the low concentration range (Fig. 2b) showsthat at 15–35 [1]C they have a continuous concave shape (L-3) whereas at 45 [1]C the shape of the isotherm could be even considered of S-3 type with an inflection at diuron concentration around 2
lmol L1.
在较低浓度的范围内所观察到的等温线(图2b),显示它们在15-35摄氏度的范围内呈连续的凹形(L-3);而在45摄氏度时,等温线的形状更可算是属于S-3类,即在敌草降的浓度约为 2lmol L
1 时出现屈折。
Such shift at high temperatures would suggest a higher contribution of cooperative
adsorption, promoted by the interactions between the solute and the adsorbate.
在高温处出现这种转变,意味着溶解物和吸附物之间的互动作用,令它们产生更多的合作吸附效果。
Diuronadsorption isotherms
敌草隆吸附等温线
The data corresponding to the adsorption of diuron onto AC at different temperatures
without pH control are shown in Fig. 2a–c.
图 2a-c 展示了在没有控制酸碱度的情况下,AC在不同温度时对敌草隆的吸附量。
As can be seen, they are well defined in the range studied, covering up to around 55 lmol
L 1.
从各图可见,它们在研究所涉及的温度范围内都很完整,覆盖至大约 55 lmol L1 的范围。
The uptake of diuron increases significantly with temperature in the whole range ofconcentration tested, thus the observed effect of temperature on the adsorption
capacity of diuron does not follow the most common trend for adsorption.
在整个受测试的浓度范围内,敌草隆的吸附量都随着温度显着增加,因此,根据观察所得,温度对敌草隆吸附能力的影响,与最常见的吸附趋势不同。
This apparent endothermic behaviour has been interpreted in terms of an increasedplanarity and diffusivity of the diuron molecules linked to the easier desolvation of diuron molecules in solution as temperature increases [10,11,27].
这种明显的吸热表现,是由于溶液中的敌草隆份子在温度增加时更容易出现去溶剂化的情形,因而令敌草隆份子的平面性和扩散率都有所增加 [10,11,27]。
In a first approach, the equilibrium isotherms of Fig. 2a can be considered as L-type,more specifically L-3 subtype of Giles classification [12], indicating favourable
adsorption related to the low water solubility of diuron and the occurrence of
multilayer adsorption.
在第一次进行时,图 2a 的均衡等温线属于 L 类(更仔细而言则属 Giles 分类法中的 L-3 分类 [12]),因而显示出,敌草隆较低的水溶度和多层吸附现象令它有较好的吸附能力。
The ever decreasing slope and the plateau of the first part of the isotherm are found in
most cases of adsorption from dilute solutions.
该条等温线第一部份所呈现的坡度递减,并在高处转平的情形,是大部份稀薄溶液的常见吸附情形。
This pattern is representative of a progressive occupation of the surface available
for adsorption.
这个模式代表可供吸附的表面被逐渐占用。
The saturation shown by the plateau has been interpreted as the result of monolayercompletion, although it does not necessarily imply ordering in a close-packed
layer of adsorbate.
虽然等温线在高处转平所展现的饱和情况被理解为是单层吸附完成的结果,却不一定能显示出一层排列紧密的吸附物本身的序列情况。
The layer can also contain solvent molecules and adsorbate clusters, and the filling ofthe sites available on the original surface can coexist in some extent with the formation of multilayer or the filling of pores.
该层吸附物也可以包含有溶剂的份子和吸附物的份子群,而且,它们除了吸附在原有表面的可吸附位置之外,也可以形成一定程度的多层吸附物,或者填塞在孔洞中。
The solute concentration at which the plateau of the isotherm is fully developed decreasesas temperature increases, thus it varies from around 45 lmol L1 to around 30
lmol L1 for the adsorption at 15 and 45 [1]C, respectively.
当等温线在高处完全转平的时候,溶解物的浓度会随着温度增高而减少,即在15摄氏度和45摄氏度时,浓度分别为约45lmol L1至约 30 lmol L1。
In a previous paper, Fontecha-Cámara et al. [10] reported L-type isotherms for theadsorption of diuron on activated carbon fiber and cloth at pH 7, whereas
Bouras et al. [9] reported S-type isotherms for the adsorption of diuron on
surfactant-modified pillared clays at pH 6.
在过去的论文中,Fontecha-Cámara 等人 [10] 曾经报导:敌草隆在酸碱度为 7 时,对活性碳纤维和布料的吸附量呈现 L 类等温线;而 Bouras 等人 [9] 则报导敌草隆在酸碱度为 6 时,对于表面活性经过修改的柱状粘土的吸附量呈现S类等温线。
Thus, the formation of multilayer seems to be conditioned by the nature of the adsorbent surface
and the effect of pH on the adsorbent-solute and adsorbate solute interactions.
因此,多层吸附物的形成,似乎是受到吸附面的性质影响,而另一项影响因素则是酸碱度对已吸附的溶解物和尚待吸附的溶解物之间互动作用的影响。
The observation of the isotherms within the low concentration range (Fig. 2b) showsthat at 15–35 [1]C they have a continuous concave shape (L-3) whereas at 45 [1]C the shape of the isotherm could be even considered of S-3 type with an inflection at diuron concentration around 2
lmol L1.
在较低浓度的范围内所观察到的等温线(图2b),显示它们在15-35摄氏度的范围内呈连续的凹形(L-3);而在45摄氏度时,等温线的形状更可算是属于S-3类,即在敌草降的浓度约为 2lmol L
1 时出现屈折。
Such shift at high temperatures would suggest a higher contribution of cooperative
adsorption, promoted by the interactions between the solute and the adsorbate.
在高温处出现这种转变,意味着溶解物和吸附物之间的互动作用,令它们产生更多的合作吸附效果。
展开全部
您好:译文如下
对应于敌草隆的吸附的敌草隆吸附isothermsthe数据上的交流在不同温度下不控制pH值在图2a–当成表现可以看出,他们是在研究的范围界定,coveringup约55 L 2SO 1。敌草隆浓度增加在整个范围内的温度进行显著性的吸收,从而观察到温度对吸附的影响能力并不遵循敌草隆吸附的最普遍的趋势。这种明显的吸热行为被解释在增加的平面性和扩散的敌草隆moleculeslinked在solutionas温度的增加10,11,27 ] [敌草隆分子更容易的去溶剂化。在第一种方法中,图2a的平衡等温线可视为L型,更具体L-3型吉尔斯分类[ 12 ],indicatingfavourable吸附到diuronand多层吸附发生的低水溶解度的关系。永远decreasingslope和等温线的第一部分的高原发现大多数情况下从稀溶液中的吸附。这种模式具有代表性的表面可foradsorption逐步占领。所示的高原饱和一直认为单层完成的结果,虽然这并不一定意味着在一个封闭的填充层吸附层排序。还可以包含溶剂分子与吸附集群的网站,可以在原有的表面填充可以coexistin一定程度上具有多层或孔隙填充形成。在充分发展的isothermis降低高原温度的增加,溶质的浓度,从而从大约45升1至30左右 2SO 4 L 1在15和45 C吸附不同,分别。在过去的研究中,玛拉等人fontecha-cá。[ 10 ]报道L型等温线在pH为7的活性碳纤维布adsorptionof敌草隆,而bouraset铝。[ 9 ]报道S型等温线的diuronon表面活性剂改性蒙脱土的吸附在pH值6。因此,形成多层似乎在adsorbentsurface自然条件及pH值对吸附溶质和adsorbatesoluteinteractions的影响。在低concentrationrange等温线的观察(图2B)表明,在15–35 C他们已经连续concaveshape(3)而在45 C的吸附等温线形状可能甚至考虑与敌草隆concentrationaround 4 L 2 拐点S型1。在高的温度要求较高的贡献的协同吸附这样的转变,promotedby相互作用的溶质和吸附物之间。
对应于敌草隆的吸附的敌草隆吸附isothermsthe数据上的交流在不同温度下不控制pH值在图2a–当成表现可以看出,他们是在研究的范围界定,coveringup约55 L 2SO 1。敌草隆浓度增加在整个范围内的温度进行显著性的吸收,从而观察到温度对吸附的影响能力并不遵循敌草隆吸附的最普遍的趋势。这种明显的吸热行为被解释在增加的平面性和扩散的敌草隆moleculeslinked在solutionas温度的增加10,11,27 ] [敌草隆分子更容易的去溶剂化。在第一种方法中,图2a的平衡等温线可视为L型,更具体L-3型吉尔斯分类[ 12 ],indicatingfavourable吸附到diuronand多层吸附发生的低水溶解度的关系。永远decreasingslope和等温线的第一部分的高原发现大多数情况下从稀溶液中的吸附。这种模式具有代表性的表面可foradsorption逐步占领。所示的高原饱和一直认为单层完成的结果,虽然这并不一定意味着在一个封闭的填充层吸附层排序。还可以包含溶剂分子与吸附集群的网站,可以在原有的表面填充可以coexistin一定程度上具有多层或孔隙填充形成。在充分发展的isothermis降低高原温度的增加,溶质的浓度,从而从大约45升1至30左右 2SO 4 L 1在15和45 C吸附不同,分别。在过去的研究中,玛拉等人fontecha-cá。[ 10 ]报道L型等温线在pH为7的活性碳纤维布adsorptionof敌草隆,而bouraset铝。[ 9 ]报道S型等温线的diuronon表面活性剂改性蒙脱土的吸附在pH值6。因此,形成多层似乎在adsorbentsurface自然条件及pH值对吸附溶质和adsorbatesoluteinteractions的影响。在低concentrationrange等温线的观察(图2B)表明,在15–35 C他们已经连续concaveshape(3)而在45 C的吸附等温线形状可能甚至考虑与敌草隆concentrationaround 4 L 2 拐点S型1。在高的温度要求较高的贡献的协同吸附这样的转变,promotedby相互作用的溶质和吸附物之间。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
敌草隆的吸附等温线对应的数据到AC的敌草隆吸附未经控制pH值的不同的温度如图2a-c的。正如可以看到的,它们是定义在研究范围内,覆盖约55 lmol大号1。敌草隆增加显着的摄温度在整个范围内的浓度测试,因此,观察到的效果,温度对吸附容量敌草隆的吸附不遵循最常见的势。这种明显的吸热行为已经解释增加的平整度和扩散的敌草隆分子链接到的敌草隆分子在溶中的更容易的去溶剂化随着温度的升高[10,11,27]。在第一种方法中,平衡等温线的图。 2a的可以被认为是L-型,多具体的L-3亚型的Giles分类[12],指示良好的吸附与敌草隆中低水溶解度发生多层吸附。的不断下降的第一部分等温线的斜率和高原大多数情况下,从稀溶液中的吸附。这种模式是代表一个渐进的占领表面吸附。饱和度的高原被解释作为单层完成的结果,虽然它确实不一定意味着订购在紧密堆积层吸附。该层还可以包含溶剂的分子和吸附集群,和原始表面上的网站提供的填充可以共存在一定程度上形成多层或毛孔的填充。溶质的浓度在高原等温线充分发展随着温度的升高,从而有异,从约45 lmol大号?约30 lmol大号的?吸附,分别在15和45摄氏度。在过去的研究中,Fontecha卡马拉等。 [10]报道的L-型的吸附等温线敌草隆在活性炭纤维和布在pH为7,而Bouras等。 [9]报道的S-型敌草隆的吸附等温线在表面活性剂改性层柱粘土,pH值6。因此,形成多层似乎要空调的吸附剂的性质表面和在吸附剂上溶质和adsorbatesolute的pH值的影响的相互作用。的等温线范围内的低浓度的观察范围(图2b)示出,在15-35?C他们有一个连续的凹部形状(L-3),而在45?C的等温线的形状能敌草隆浓度的一个转折点甚至被认为是S-3型约2 lmol大号1。这种转变在高温下会建议较高的贡献,促进合作的吸附由溶质和吸附物质之间的相互作用。
追问
请问你是怎么翻译的,语序不对啊,能不能把顺序什么的调好,最起码要读的通啊,翻译好了还要追加高分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
必须英文达到这个水平的,也就是化学与英文都达到这个水平的才能读懂。翻译出来的不论什么文字,都达不到这个水平。不是那行的,只说道理。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询