已知向量a=(cosx,4sinx-2),向量b =(8sinx,2sinx 1),设函数f(x )=向量a*b,求函数fx最大
求最大值(2)在三角形ABC中,A为锐角,角A.B.C的对边分别为abc,f(A)=6,且三角形ABC的面积为3,b+c=2+3*根号2,求a的值...
求最大值(2)在三角形ABC中,A为锐角,角A.B.C的对边分别为abc,f(A)=6,且三角形ABC的面积为3,b+c=2+3*根号2,求a的值
展开
1个回答
展开全部
b=(8sinx,2sinx+1)?
1
f(x)=a·b=(cosx,4sinx-2)·(8sinx,2sinx+1)=8sinxcosx+8sinx^2-2+4sinx-4sinx
=4sin(2x)+4(1-cos(2x))-2=4sqrt(2)sin(2x-π/4)+2,当:sin(2x-π/4)=1时
f(x)取得最大值:4sqrt(2)+2
2
f(A)=4sqrt(2)sin(2A-π/4)+2=6,即:sin(2A-π/4)=sqrt(2)/2,0<A<π/2
故:-π/4<2A-π/4<3π/4,故:2A-π/4=π/4,即:A=π/4,△ABC的面积:
S=(1/2)bcsinA=sqrt(2)bc/4=3,即:bc=6sqrt(2),故:b^2+c^2=(b+c)^2-2bc
(2+3sqrt(2))^2-12sqrt(2)=22,故:a^2=b^2+c^2-2bccosA=22-12sqrt(2)*sqrt(2)/2
=10,即:a=sqrt(10)
1
f(x)=a·b=(cosx,4sinx-2)·(8sinx,2sinx+1)=8sinxcosx+8sinx^2-2+4sinx-4sinx
=4sin(2x)+4(1-cos(2x))-2=4sqrt(2)sin(2x-π/4)+2,当:sin(2x-π/4)=1时
f(x)取得最大值:4sqrt(2)+2
2
f(A)=4sqrt(2)sin(2A-π/4)+2=6,即:sin(2A-π/4)=sqrt(2)/2,0<A<π/2
故:-π/4<2A-π/4<3π/4,故:2A-π/4=π/4,即:A=π/4,△ABC的面积:
S=(1/2)bcsinA=sqrt(2)bc/4=3,即:bc=6sqrt(2),故:b^2+c^2=(b+c)^2-2bc
(2+3sqrt(2))^2-12sqrt(2)=22,故:a^2=b^2+c^2-2bccosA=22-12sqrt(2)*sqrt(2)/2
=10,即:a=sqrt(10)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询