平面几何五大定理是哪五大?

 我来答
黄意诚
高粉答主

推荐于2016-03-08 · 每个回答都超有意思的
知道大有可为答主
回答量:1.6万
采纳率:88%
帮助的人:2447万
展开全部
平面几何五大定理是:
公设1:任意一点到另外任意一点可以画直线。
公设2:一条有限线段可以继续延长。
公设3:以任意点为心及任意的距离可以画圆。
公设4:凡直角都彼此相等。
公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交。
入阳之城
2015-08-23 · TA获得超过345个赞
知道小有建树答主
回答量:202
采纳率:72%
帮助的人:104万
展开全部
勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。

1、欧拉定理:
同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半

2、九点圆:
任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

3、费尔马点:
已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。

4、海伦(Heron)公式:
在△ABC中,边BC、CA、AB的长分别为a、b、c,若p= (a+b+c),
则△ABC的面积S=

5、塞瓦(Ceva)定理:
在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则 ;其逆亦真
参考:http://wenku.baidu.com/link?url=cDgRdC3--uQloeYcDs9GoTuOvy8LMNbxxA1alNZzgNP-y10N2AFqIHX1tZhA-GcJ2zJS97kGltpBmSrrvv-XY3ewTOOBBDUtFH22yfBb5Uy
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-03-29
展开全部
勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。

1、欧拉(Euler)线:
同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半

2、九点圆:
任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

3、费尔马点:
已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。

4、海伦(Heron)公式:
在△ABC中,边BC、CA、AB的长分别为a、b、c,若p= (a+b+c),
则△ABC的面积S=

5、塞瓦(Ceva)定理:
在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则 ;其逆亦真
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式