如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2
若棱AA1上存在一点P,使得AP=λPA1,当二面角A-B1C1-P的大小为30°时,求实数λ的值....
若棱AA1上存在一点P,使得AP=λPA1,当二面角A-B1C1-P的大小为30°时,求实数λ的值.
展开
1个回答
展开全部
连db1,A1D⊥平面ABCD,所以b1c⊥平面A1B1C1D1,ABCD是,正方形,∴B1C1⊥平面A1B1CD
在A1D上取点P1,使DP1=λP1A1,则∠DB1P1为二面角A-B1C1-P=30°
ABCD边长为1,AA1=2,A1D⊥平面ABCD, ∴A1D=√3, ∴B1D=2, ∠DB1C=30°,
∴∠A1B1P1=90°-∠DB1C-∠DB1P1=30°,∴P1A1=A1B1*tan30°=√3/3,
AP=λPA1,λ=AP/PA1=DP1/P1A1=(A1D-P1A1)/P1A1=(√3-√3/3)/(√3/3)=2
实数λ的值=2
在A1D上取点P1,使DP1=λP1A1,则∠DB1P1为二面角A-B1C1-P=30°
ABCD边长为1,AA1=2,A1D⊥平面ABCD, ∴A1D=√3, ∴B1D=2, ∠DB1C=30°,
∴∠A1B1P1=90°-∠DB1C-∠DB1P1=30°,∴P1A1=A1B1*tan30°=√3/3,
AP=λPA1,λ=AP/PA1=DP1/P1A1=(A1D-P1A1)/P1A1=(√3-√3/3)/(√3/3)=2
实数λ的值=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询