证明等差数列,等比数列前n项和的公式
推荐于2017-09-21 · 知道合伙人教育行家
wangcai3882
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:20214
获赞数:108207
本人擅长中学阶段数、理、化、生等理科知识,尤其是数学。高中时曾参加全国数学竞赛并获奖,期望能为你答疑
向TA提问 私信TA
关注
展开全部
下面用数学归纳法证明Sn=na1+n(n-1)d/2和Sn=[a1(1-qⁿ)]/(1-q)
(一)等差数列前n项和公式Sn=na1+n(n-1)d/2证明:
(1)n=1,S1=a1,成立
(2)设Sk=ka1+k(k-1)d/2,则
S(k+1)=Sk+a(k+1)
=ka1+k(k-1)d/2+a1+kd
=(k+1)a1+(k+1)kd/2
所以n=k+1也成立。
所以等差数列前n项和公式为Sn=na1+n(n-1)d/2。
(二)等比数列前n项和公式Sn=[a1(1-qⁿ)]/(1-q)证明:
(1)n=1,S1=a1成立
(2)设Sk=[a1(1-q^k)]/(1-q)。
S(k+1)=Sk+a(k+1)
=a1(1-q^k)/(1-q)+a1q^k
=[a1/(1-q)][1-q^k+q^k-q^(k+1)]
=a1[1-q^(k+1)]/(1-q)
所以n=k+1时公式仍成立。
所以等比数列前n项和公式Sn=[a1(1-qⁿ)]/(1-q)。
(一)等差数列前n项和公式Sn=na1+n(n-1)d/2证明:
(1)n=1,S1=a1,成立
(2)设Sk=ka1+k(k-1)d/2,则
S(k+1)=Sk+a(k+1)
=ka1+k(k-1)d/2+a1+kd
=(k+1)a1+(k+1)kd/2
所以n=k+1也成立。
所以等差数列前n项和公式为Sn=na1+n(n-1)d/2。
(二)等比数列前n项和公式Sn=[a1(1-qⁿ)]/(1-q)证明:
(1)n=1,S1=a1成立
(2)设Sk=[a1(1-q^k)]/(1-q)。
S(k+1)=Sk+a(k+1)
=a1(1-q^k)/(1-q)+a1q^k
=[a1/(1-q)][1-q^k+q^k-q^(k+1)]
=a1[1-q^(k+1)]/(1-q)
所以n=k+1时公式仍成立。
所以等比数列前n项和公式Sn=[a1(1-qⁿ)]/(1-q)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询