高阶无穷小的定义是什么?
3个回答
展开全部
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=0,那么称f(x)是g(x)的高阶无穷小。
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=无穷大,那么称f(x)是g(x)的低阶无穷小。
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=k(常数),那么称f(x)是g(x)的同阶无穷小。
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=1,那么称f(x)是g(x)的等价无穷小。
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=无穷大,那么称f(x)是g(x)的低阶无穷小。
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=k(常数),那么称f(x)是g(x)的同阶无穷小。
当x->x0时,f(x)=0,g(x)=0,如果当x->0时,f(x)/g(x)=1,那么称f(x)是g(x)的等价无穷小。
展开全部
词条:【高阶无穷小】
无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
这里值得一提的是,无穷小是可以比较的:
假设a、b都是lim的无穷小
如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)注:o读作奥密克戎,希腊字母
比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了
另外 如果a和b等阶无穷小 那么有:a=b+o(b) 或者b=a+o(a)
无穷小之间的简单运算:
如果b是a的高阶无穷小,即lim(b/a)=0;
如果a与b为等阶无穷小,即lim(b/a)=c;(这里的c指的是常数)
【数不胜数】团队为您解答,望采纳O(∩_∩)O~
无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
这里值得一提的是,无穷小是可以比较的:
假设a、b都是lim的无穷小
如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)注:o读作奥密克戎,希腊字母
比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了
另外 如果a和b等阶无穷小 那么有:a=b+o(b) 或者b=a+o(a)
无穷小之间的简单运算:
如果b是a的高阶无穷小,即lim(b/a)=0;
如果a与b为等阶无穷小,即lim(b/a)=c;(这里的c指的是常数)
【数不胜数】团队为您解答,望采纳O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于两个无穷小,f(x) g(x) 当x→0时,都趋于o,若x→0是limf(x)/g(x) =无穷大,则f(x)是g(x)当x→0的高阶无穷小
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询