数学归纳法证明1/n+1+1/n+2+1/n+3+...+1/3n>9/10 n>=2
1)当n=2时,左=1/3+1/4+1/5+1/6=57/60>54/60=9/10,成立.(2)假设n=k时,有1/(k+1)+1/(k+2)+...+1/3k>9/1...
1)当n=2时,左=1/3 +1/4+1/5+1/6=57/60>54/60=9/10,成立.
(2)假设n=k时,有1/(k+1) +1/(k+2) +...+1/3k >9/10
那么 1/(k+2)+1/(k+3) +...+1/3(k+1)
=[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
第二步中为什么是
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
不应该是
>9/10 +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)的么 展开
(2)假设n=k时,有1/(k+1) +1/(k+2) +...+1/3k >9/10
那么 1/(k+2)+1/(k+3) +...+1/3(k+1)
=[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
第二步中为什么是
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
不应该是
>9/10 +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)的么 展开
2个回答
展开全部
1)当n=2时,左=1/3 +1/4+1/5+1/6=57/60>54/60=9/10,成立.
(2)假设n=k时,有1/(k+1) +1/(k+2) +...+1/3k >9/10
那么 1/(k+2)+1/(k+3) +...+1/3(k+1)
=[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
~~~~~~~~~~~~~~~~~~~~~~~~~目的是为了简化计算,这是一道放缩法的应用,在数学中适当的放缩有利于计算~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
(2)假设n=k时,有1/(k+1) +1/(k+2) +...+1/3k >9/10
那么 1/(k+2)+1/(k+3) +...+1/3(k+1)
=[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
~~~~~~~~~~~~~~~~~~~~~~~~~目的是为了简化计算,这是一道放缩法的应用,在数学中适当的放缩有利于计算~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
追问
1/(3k+3) +1/(3k+3)+1/(3k+3)=1/(3k+1) +1/(3k+2)+1/(3k+3) ??
追答
当然不等于啦~~~~~~~~~~~~~放说法你们没学过吗??
1/(3k+3) +1/(3k+3)+1/(3k+3)[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+3) +1/(3k+3)+1/(3k+3)-1/(k+1),
而[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+3) +1/(3k+3)+1/(3k+3)-1/(k+1)的值是9/10
从而[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)>9/10
~~~~~~
算了做给你看吧~~~~~~~~~~~~~~~~
1)n=2,时,1/3+1/41/5+1/6=19/20>9/10
2)假设n=k时,1/k+1+1/k+2+1/k+3+...+1/3k-1>9/10-1/3k
那么当n=k+1时,
1/k+2+1/k+3+...+1/3k-1+1/3k+1/(3k+1)+1/(3k+2)>9/10+1/3k+1/(3k+1)+1/(3k+2)-1/k+1
那么只需要证明1/3k+1/(3k+1)+1/(3k+2)-1/k+1>-1/(3k+3)
即 1/3k+1/(3k+1)+1/(3k+2)>2/(3k+3)
上式显然成立,那么当n=k+1时,假设也成立
综合1),2)可知道不等式1/n+1+1/n+2+1/n+3+...+1/3n>9/10对于任意n>=2都成立。
展开全部
写成这样是为了化简9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)=9/10+3/(3k+3)-1/(1+k)=9/10-1/(k+1)-1/(k+1)=9/10
更多追问追答
追问
1/(3k+3) +1/(3k+3)+1/(3k+3)=1/(3k+1) +1/(3k+2)+1/(3k+3) ??
追答
不等于,是小于
[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)要大于[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+3) +1/(3k+3)+1/(3k+3)-1/(k+1),而[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+3) +1/(3k+3)+1/(3k+3)-1/(k+1)的值是9/10所以[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)要大于9/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询