向量a、b满足|a|=|b|=2,|c|=1,(a-c)(b-c)=0,求|a-b|的取值范围。
3个回答
展开全部
(a-c)(b-c)=0---->ab-c(a+b)+c^2=0---->(ab+1)^2=[c(a+b)]^2,
(ab)^2+2(ab)+1<=c^2(a^2+b^2+2ab)=8+2ab,(ab)^2=7,|ab|=√7.
∵ ab∈R, ∴ -|ab|≤ab≤|ab|,即-√7|≤ab≤√7.
∵ -2√7|≤-2ab≤2√7, 8-2√7|≤8-2ab≤8+2√7,即
(√7-1)^2≤8-2ab≤(√7+1)^2.而|a-b|^2=a^2+b^2-2ab=8-2ab,
∴ (√7-1)^2≤|a-b|^2≤(√7+1)^2, ∴ √7-1≤|a-b|≤√7+1.
(ab)^2+2(ab)+1<=c^2(a^2+b^2+2ab)=8+2ab,(ab)^2=7,|ab|=√7.
∵ ab∈R, ∴ -|ab|≤ab≤|ab|,即-√7|≤ab≤√7.
∵ -2√7|≤-2ab≤2√7, 8-2√7|≤8-2ab≤8+2√7,即
(√7-1)^2≤8-2ab≤(√7+1)^2.而|a-b|^2=a^2+b^2-2ab=8-2ab,
∴ (√7-1)^2≤|a-b|^2≤(√7+1)^2, ∴ √7-1≤|a-b|≤√7+1.
追问
[c(a+b)]^2=c^2(a+b)^2不对吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵(a-c)(b-c)
=ab-(a+b)c+c²
=0
∴(ab+1)²=[c(a+b)]²,
(ab)²+2(ab)+1<=c²(a²+b²+2ab)=8+2ab,
(ab)²=7,
=>|ab|=√7.
∵ ab∈R,
∴ -|ab|≤ab≤|ab|,即-√7≤ab≤√7.
∵而|a-b|²=a²+b²-2ab=8-2ab,
∴ √7-1≤|a-b|≤√7+1.
=ab-(a+b)c+c²
=0
∴(ab+1)²=[c(a+b)]²,
(ab)²+2(ab)+1<=c²(a²+b²+2ab)=8+2ab,
(ab)²=7,
=>|ab|=√7.
∵ ab∈R,
∴ -|ab|≤ab≤|ab|,即-√7≤ab≤√7.
∵而|a-b|²=a²+b²-2ab=8-2ab,
∴ √7-1≤|a-b|≤√7+1.
更多追问追答
追问
[c(a+b)]^2=c^2(a+b)^2不对吧???????????????????
追答
lcl la+bl都是实数,且lcl²=c², la+bl²=(a+b)²
为何不对?
是对的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询