![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
设数列{an}中前n项和Sn=2a(n)+3n-7,证明:数列﹛an-3﹜为等比数列
1个回答
展开全部
Sn=2an+3n-7
S(n-1)=2a(n-1)+3(n-1)-7=2a(n-1)+3n-10
Sn-S(n-1)=an
=>[2an+3n-7]-[2a(n-1)+3n-10]=an
=>an-2a(n-1)+3=0
=>an-3-2a(n-1)+6=0
=>an-3=2[a(n-1)-3]
=>(an-3)/[a(n-1)-3]=2
即 数列{an-3}是以2为公比,(a1-3)为首项的等比数列
S(n-1)=2a(n-1)+3(n-1)-7=2a(n-1)+3n-10
Sn-S(n-1)=an
=>[2an+3n-7]-[2a(n-1)+3n-10]=an
=>an-2a(n-1)+3=0
=>an-3-2a(n-1)+6=0
=>an-3=2[a(n-1)-3]
=>(an-3)/[a(n-1)-3]=2
即 数列{an-3}是以2为公比,(a1-3)为首项的等比数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询