15,△ABC的内角 A,B,C所对的边分别为a,b,c ,已知:acosB-bcosa=3/5c ,那么 tan(A-B)的最大值是?求过程
2个回答
展开全部
∵acosB-bcosA=(3/5)c
∴sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)=(3/5)(sinAcosB+cosAsinB)
∴(2/5)sinAcosB=(8/5)cosAsinB
∴(sinAcosB)/(cosAsinB)=(8/5)/(2/5)=4
∴tanAcotB=(sinA/cosA)/(cosB/sinB)=(sinAcosB)/(cosAsinB)=4
∴tanA=4/cotB=4tanB
tan(A-B)
=(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/[1+4(tanB)^2]
=3tanB/[1+4(tanB)^2]
=3/(1/tanB+4tanB)
≤3/{2√[(1/tanB)×(4tanB)]}
=3/2√4
=3/4
当且仅当1/tanB=4tanB,即tanB=1/2时,等号成立,最大值就是3/4.
∴sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)=(3/5)(sinAcosB+cosAsinB)
∴(2/5)sinAcosB=(8/5)cosAsinB
∴(sinAcosB)/(cosAsinB)=(8/5)/(2/5)=4
∴tanAcotB=(sinA/cosA)/(cosB/sinB)=(sinAcosB)/(cosAsinB)=4
∴tanA=4/cotB=4tanB
tan(A-B)
=(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/[1+4(tanB)^2]
=3tanB/[1+4(tanB)^2]
=3/(1/tanB+4tanB)
≤3/{2√[(1/tanB)×(4tanB)]}
=3/2√4
=3/4
当且仅当1/tanB=4tanB,即tanB=1/2时,等号成立,最大值就是3/4.
展开全部
望采纳!祝楼主学习进步!
∵acosB-bcosA=3c/5
∴2R*sinAcosB-2R*sinBcosA=2R*sinC*3/5(正弦定理)
∴sinAcosB-sinBcosA=3sinC/5
∴sinAcosB-sinBcosA=3sin[π-(A+B)]/5
∴sinAcosB-sinBcosA=3sin(A+B)/5
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB+cosAsinB)
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB)+ (3/5)*(cosAsinB)
∴(2/5)*(sinAcosB)=(8/5)*(sinBcosA)
∴sinAcosB=4sinBcosA
∴tanAcotB=(sinA/cosA)*(cosB/sinB)=(sinAcosB)/(sinBcosA)=(4sinBcosA)/(sinBcosA)=4
∵acosB-bcosA=3c/5
∴2R*sinAcosB-2R*sinBcosA=2R*sinC*3/5(正弦定理)
∴sinAcosB-sinBcosA=3sinC/5
∴sinAcosB-sinBcosA=3sin[π-(A+B)]/5
∴sinAcosB-sinBcosA=3sin(A+B)/5
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB+cosAsinB)
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB)+ (3/5)*(cosAsinB)
∴(2/5)*(sinAcosB)=(8/5)*(sinBcosA)
∴sinAcosB=4sinBcosA
∴tanAcotB=(sinA/cosA)*(cosB/sinB)=(sinAcosB)/(sinBcosA)=(4sinBcosA)/(sinBcosA)=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询