如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆... 如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
展开
匿名用户
2013-04-09
展开全部
解:(1)直线AB与⊙P相切,
理由:过P作PD⊥AB,垂足为D,
在Rt△ABC中,∠ACB=90°,
∵AB=6cm,BC=8cm,
∴AB=10cm,
∵P为BC中点,
∴PB=4cm,
∵∠PDB=∠ACB=90°,
∠PBD=∠ABC,
∴△PBD∽△ABC,
∴即PD=2.4(cm),
当t=1.2时,PQ=2t=2.4(cm),
∴PD=PQ
∴直线AB与⊙P相切;
(2)∵∠ACB=90°,
∴AB为△ABC的外接圆的直径,
∴BO=AB=5cm,
连接OP,
∵AO=BO,CP=PB,∴PO=1/2AC=3cm,
∵点P在⊙O内部,∴⊙P与⊙O无法外切,只能内切,
∴5﹣2t=3,或2t﹣5=3,
∴t=1或4,
则:⊙P与⊙O相切时,t的值为1或4
klwzwbj
2013-04-09 · TA获得超过889个赞
知道答主
回答量:37
采纳率:0%
帮助的人:21.3万
展开全部
(1)相切;
过P作AB的垂线PM,交AB于M。
t=1.2时,PQ=1.2*2=2.4cm,既⊙P的半径为2.4cm。
PM垂直于AB,故∠PMB=∠ACB=90°,∠MBP=∠CBA,故Rt△ABC相似于Rt△PMB.
故(BP/AB)=(PM/AC),Rt△ABC,AC=6cm,BC=8cm,得到AC=10cm,
既4/10=PM/10,PM=2.4cm.圆心到线段的距离为圆的半径,故直线AB与⊙P相切。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式