lim n趋于无穷大 1/(n^2+1)+2/(n^2+2)......n/(n^2+n)的极限

百度网友5793aa894b
推荐于2016-12-02 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1.4万
采纳率:45%
帮助的人:1亿
展开全部
夹逼定理:
1/n^2+1+2/n^2+2+...+n/n^2+n
若令分母都为最小的分母n^2+1,则值会增大
分母为最大的n^2+n,值会减小,即
1/n^2+n+2/n^2+n+...+n/n^2+n
<=1/n^2+1+2/n^2+2+...+n/n^2+n
<=1/n^2+1+2/n^2+1+...+n/n^2+1

(1+2+...+n)/n^2+n <= 1/n^2+1+2/n^2+2+...+n/n^2+n <=(1+2+...+n)/n^2+1
.5n(n+1)/n^2+n <= 1/n^2+1+2/n^2+2+...+n/n^2+n <=.5n(n+1)/n^2+1
两边都取极限
得到1/2<=极限<=1/2
所以
lim 1/n^2+1+2/n^2+2+...+n/n^2+n =1/2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式