如图,⊙O为△BCD的外接圆,CE为⊙O的直径,过D作⊙O的切线交BE的延长线于A,且
如图,⊙O为△BCD的外接圆,CE为⊙O的直径,过D作⊙O的切线交BE的延长线于A,且AD∥BC,BD交CE于F.(1)求证:BD=CD;(2)若AD=4,BE=6,求C...
如图,⊙O为△BCD的外接圆,CE为⊙O的直径,过D作⊙O的切线交BE的延长线于A,且AD∥BC,BD交CE于F.
(1)求证:BD=CD;
(2)若AD=4,BE=6,求CF的长 展开
(1)求证:BD=CD;
(2)若AD=4,BE=6,求CF的长 展开
1个回答
2013-04-09
展开全部
1) 因,AD是⊙O的切线,所以,∠ADB = ∠BCD
因,AD//BC,所以,∠ADB = ∠DBC
所以,∠DBC = ∠BCD
所以,BD =CD
2)连接DO并延长交CB 于点G.则,∠ADG= 90°
因,CE是直径,所以,∠ADC = 90°
因AD//BC,所以∠BAD = 90°
所以,四边形ABGD是矩形。所以,∠DGB = 90°.
因DB= DC(1证)所以,BC = 2BG = 2AD = 8
因EB = 6,所以,CE = 10
由切过线定理可得:AD² = AB*AE = (6+AE)AE = 4² ,AE = 2
所以DG = AB = 6+2 = 8 , DE = √(4² + 2² ) = 2√5 DB = √(8² + 4² ) = 4√5 = CD
根据三角形面积公式有:CF*hD + CF*hB = BC*DG
即CF(hD + hB) = BC*DG
hD = DE*DC/CE = 2√5*4√5/10 = 4
hB = CB*BE/CE = 8*6/10 = 4.8
所以。CF = BC*DG/(hD + hB) = 8 *8 /(4+4.8) = 80/11
因,AD//BC,所以,∠ADB = ∠DBC
所以,∠DBC = ∠BCD
所以,BD =CD
2)连接DO并延长交CB 于点G.则,∠ADG= 90°
因,CE是直径,所以,∠ADC = 90°
因AD//BC,所以∠BAD = 90°
所以,四边形ABGD是矩形。所以,∠DGB = 90°.
因DB= DC(1证)所以,BC = 2BG = 2AD = 8
因EB = 6,所以,CE = 10
由切过线定理可得:AD² = AB*AE = (6+AE)AE = 4² ,AE = 2
所以DG = AB = 6+2 = 8 , DE = √(4² + 2² ) = 2√5 DB = √(8² + 4² ) = 4√5 = CD
根据三角形面积公式有:CF*hD + CF*hB = BC*DG
即CF(hD + hB) = BC*DG
hD = DE*DC/CE = 2√5*4√5/10 = 4
hB = CB*BE/CE = 8*6/10 = 4.8
所以。CF = BC*DG/(hD + hB) = 8 *8 /(4+4.8) = 80/11
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询