高数中的e的值到底咋算出来的?
当n趋向无穷大时,(1+1/n)的n次方的极限为常数e但高数中没给出咋求的值,老师只说通过代值求出的,在此希望有人能给我具体求e值的方法。...
当n趋向无穷大时,(1+1/n)的n次方的极限为常数e 但高数中没给出咋求的值,老师只说通过代值求出的,在此希望有人能给我具体求e值的方法。
展开
展开全部
e的定义及推导,参高等数学(同济第五版)上册第53页。
当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e的值就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示,以e为底数的对数通常用于㏑,而且e还是一个超越数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-10
展开全部
你老师给你的就是具体方法了,把n=1000代进去算,把n=10000代进去算,逐步逼近第一次提到常数e,是约翰·纳皮尔於1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli),他尝试计算下式的值:
(1+1/n)的n次方,求其n趋向于无穷大时的极限
已知的第一次用到常数e,是莱布尼茨於1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然往后年日有研究者用字母c表示,但e较常用,终於成为标准。
用e表示的确实原因不明,但可能因为e是「指数」(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。
(1+1/n)的n次方,求其n趋向于无穷大时的极限
已知的第一次用到常数e,是莱布尼茨於1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然往后年日有研究者用字母c表示,但e较常用,终於成为标准。
用e表示的确实原因不明,但可能因为e是「指数」(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-10
展开全部
根据泰勒公式算出来的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |