双曲线x²\9-y²\16=1上的点到做焦点的距离为7,则这点到右焦点的距离是13,求解
2个回答
展开全部
根据双曲线方程,可知焦点坐标(-5,0)(5,0)
由点到焦点的距离可知,点在x轴左侧
设点为(a,b)
根据点与两焦点的距离可列如下方程
(a-5)²+b²=13²
(a+5)²+b²=7²
解方程,可得点的坐标为(-6,4倍根号3),(-6,-4倍根号3)
可代入双曲线验证结果,所求点在双曲线上
由点到焦点的距离可知,点在x轴左侧
设点为(a,b)
根据点与两焦点的距离可列如下方程
(a-5)²+b²=13²
(a+5)²+b²=7²
解方程,可得点的坐标为(-6,4倍根号3),(-6,-4倍根号3)
可代入双曲线验证结果,所求点在双曲线上
追问
要是在不知道答案是13的情况下呢?不是求曲线上的点哦
追答
如果不是曲线上的点,题中还会给出更多相关的条件来求。
我们可以从曲线中得到许多隐藏条件,因而题中的条件很少。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |