2个回答
展开全部
1,-1<=x^2-3<=1
2<=x^2<=4
-2<=x<=-√2或√2=x=2
2,-1<=x+1<=1
-2<=x<=0
3,f(x^2-3)+f(x+1)>=0
f(x^2-3)>=-f(x+1)
f(x^2-3)>=f(-x-1)(因为是奇函数)
x^2-3>=-x-1(因为单调增)
x^2+x-2>=0
(x+2)(x-1)>=0
x<=-2或x>=1
所以定义域是{x|x=-2}
此时,g=√[f(x^2-3)+f(x+1)]=g=√[f(1)+f(-1)]=0
所以,值域是{0}
参考:http://zhidao.baidu.com/question/31222783.html
2<=x^2<=4
-2<=x<=-√2或√2=x=2
2,-1<=x+1<=1
-2<=x<=0
3,f(x^2-3)+f(x+1)>=0
f(x^2-3)>=-f(x+1)
f(x^2-3)>=f(-x-1)(因为是奇函数)
x^2-3>=-x-1(因为单调增)
x^2+x-2>=0
(x+2)(x-1)>=0
x<=-2或x>=1
所以定义域是{x|x=-2}
此时,g=√[f(x^2-3)+f(x+1)]=g=√[f(1)+f(-1)]=0
所以,值域是{0}
参考:http://zhidao.baidu.com/question/31222783.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询