如何利用二重积分计算由下列曲面z=x^2+y^2,y=1,z=0,y=x^2所围成的立体的体积
是这样的所围成的立体的体积=∫∫<D>(x²+y²)dxdy=2∫<0,1>dx∫<x²,1>(x²+y²)dy=2∫<...
是这样的 所围成的立体的体积=∫∫<D>(x²+y²)dxdy
=2∫<0,1>dx∫<x²,1>(x²+y²)dy
=2∫<0,1>(x²+1/3-x^4-x^6/3)dx
=2(x³/3+x/3-x^5/5-x^7/21)│<0,1>
=2(1/3+1/3-1/5-1/21 =
88/105。 这种做法我已经知道了 我想问 为什么不能先取y的范围(0,1) 再用(-y^1/2,y^1/2)表示x的范围? 展开
=2∫<0,1>dx∫<x²,1>(x²+y²)dy
=2∫<0,1>(x²+1/3-x^4-x^6/3)dx
=2(x³/3+x/3-x^5/5-x^7/21)│<0,1>
=2(1/3+1/3-1/5-1/21 =
88/105。 这种做法我已经知道了 我想问 为什么不能先取y的范围(0,1) 再用(-y^1/2,y^1/2)表示x的范围? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询