在平行四边形ABCD中,AC是一条对角线,∠B=∠DAC,延长BC至E点,使CE=BC,连接DE. (1)求证:四边形AB
在平行四边形ABCD中,AC是一条对角线,∠B=∠DAC,延长BC至E点,使CE=BC,连接DE.(1)求证:四边形ABED是等腰梯形;(2)若AB=AD=2,求梯形AB...
在平行四边形ABCD中,AC是一条对角线,∠B=∠DAC,延长BC至E点,使CE=BC,连接DE.(1)求证:四边形ABED是等腰梯形;(2)若AB=AD=2,求梯形ABED的面积.
展开
展开全部
1
ABCD是平四,又有∠B=∠CAD,故可知∠B=∠ACB=∠CAD=∠CDA,AD‖BE,AD=BC=CE
由上可得ACED是平四,BC=AC=CD
故ABCD是菱形,CE=BC=AC
故ACED是菱形
∴AB=BE=DE,又有BE=2AD,AD‖BE
∴ABED是等腰梯形
2
由上可得AB=AC=BC=CD=AD=DE=CE
故△ABC,△ACD,△DEC均为等边三角形
∴∠B=60°
S梯形ABED=(AD+BE)×(AB×sin60°)÷2=(4+4×2)×(4×√3/2)÷2=12√3
ABCD是平四,又有∠B=∠CAD,故可知∠B=∠ACB=∠CAD=∠CDA,AD‖BE,AD=BC=CE
由上可得ACED是平四,BC=AC=CD
故ABCD是菱形,CE=BC=AC
故ACED是菱形
∴AB=BE=DE,又有BE=2AD,AD‖BE
∴ABED是等腰梯形
2
由上可得AB=AC=BC=CD=AD=DE=CE
故△ABC,△ACD,△DEC均为等边三角形
∴∠B=60°
S梯形ABED=(AD+BE)×(AB×sin60°)÷2=(4+4×2)×(4×√3/2)÷2=12√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询