数学题 急 20

如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形.(2)将△ADE绕点A逆时针旋转45°,如图2中的... 如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.
(1)求证:△BMD为等腰直角三角形.
(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.
(3)将△ADE绕点A逆时针旋转135°,如图3中的“△BMD为等腰直角三角形”成立吗?(不用说明理由).
(4)我们是否可以猜想,将△ADE绕点A任意旋转一定的角度,如图4中的“△BMD为等腰直角三角形”均成立?(不用说明理由).
把顺时改为逆时
不对 把逆时改为顺时
展开
 我来答
明月松4999
2013-04-14 · TA获得超过13.4万个赞
知道大有可为答主
回答量:7987
采纳率:47%
帮助的人:3587万
展开全部
分析:(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明∠BMD=90°,所以△BMD为等腰直角三角形;
(2)延长DM交BC于N,先根据∠EDB=∠ABC=90°证明ED∥BC,然后根据两直线平行,内错角相等求出∠DEM=∠MCN,从而证明△EDM与△MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BM⊥DM,且BM=DM.
(3)(1)中的结论成立.
(4)(1)中的结论成立.
解答:(1)证明:
∵点M是Rt△BEC的斜边EC的中点,
∴BM=
1
2
EC=MC,
∴∠MBC=∠MCB.
∴∠BME=2∠BCM.
同理可证:DM=
1
2
EC=MC,
∠EMD=2∠MCD.
∴∠BMD=2∠BCA=90°,
∴BM=DM.
∴△BMD是等腰直角三角形.

(2)(1)中的结论仍然成立.
延长DM与BC交于点N(如图)
∵DE⊥AB
CB⊥AB,
∴∠EDB=∠CBD=90°
∴DE∥BC.
∴∠DEM=∠MCN.
又∵∠EMD=∠NMC,
EM=MC
∴△EDM≌△MNC.
∴DM=MN.
DE=NC=AD.
又AB=BC,
∴AB-AD=BC-CN
∴BD=BN.
∴BM⊥DM.
即∠BMD=90°.
∵∠ABC=90°,
∴BM=
1
2
DN=DM.
∴△BMD是等腰直角三角形.

(3)(1)中的结论成立.

(4)(1)中的结论成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式