【再次求助一道不定积分问题(需要写出用凑微分法解题的过程)】
1个回答
2013-04-15
展开全部
∫x^2/√1-x^2 dx
设x=sina, a属于(0,π/2),
于是可化为:∫sina^2/√1-sina^2 dsina
化简:∫sina^2/√1-sina^2 dsina
=∫(sina^2/cosa)*cosa da
= ∫sina^2da
= ∫(sina^2-1/2+1/2)da
=1/2∫(1/2-cos2a)d2a
=1/2∫(1/2-cos2a)d2a
=1/2*(a-sin2a)+C
=1/2arcsinx-x根号(1-x^2)+C
设x=sina, a属于(0,π/2),
于是可化为:∫sina^2/√1-sina^2 dsina
化简:∫sina^2/√1-sina^2 dsina
=∫(sina^2/cosa)*cosa da
= ∫sina^2da
= ∫(sina^2-1/2+1/2)da
=1/2∫(1/2-cos2a)d2a
=1/2∫(1/2-cos2a)d2a
=1/2*(a-sin2a)+C
=1/2arcsinx-x根号(1-x^2)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询