求微分方程y"+2y'=x^2+1满足y(0)=1,y'(0)=-2的特解
展开全部
解:
y"+2y'=0的,特征根为0,-2
0是单根,设特解y*=x(ax^2+bx+c),y*‘=3ax^2+2bx+c,y*‘’=6ax+2b,代入求得:
a=1/6,b=-1/4,c=3/4
通解为:y=C1+C2e^(-2x)+x(x^2/6-x/4+3/4)
y'=-2C2e^(-2x)+x^2/3-x/2+3/4
由:y(0)=1,y'(0)=-2得:C1+C2=1, -2=-2C2+3/4
C2=11/8 C1=-3/8
所求特解:y=-3/8+(11/8)e^(-2x)+x(x^2/6-x/4+3/4)
y"+2y'=0的,特征根为0,-2
0是单根,设特解y*=x(ax^2+bx+c),y*‘=3ax^2+2bx+c,y*‘’=6ax+2b,代入求得:
a=1/6,b=-1/4,c=3/4
通解为:y=C1+C2e^(-2x)+x(x^2/6-x/4+3/4)
y'=-2C2e^(-2x)+x^2/3-x/2+3/4
由:y(0)=1,y'(0)=-2得:C1+C2=1, -2=-2C2+3/4
C2=11/8 C1=-3/8
所求特解:y=-3/8+(11/8)e^(-2x)+x(x^2/6-x/4+3/4)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询