不定积分dx/sinx=,要步骤谢谢
∫ dx/sinx=ln|cscx-cotx| +c。c为常数。
解答过程如下:
∫ cscx dx=ln|cscx-cotx| +c
∫ secx dx=ln|secx+tanx| +c
∫ dx/sinx
=∫ cscx dx
=∫ cscx (cscx-cotx)/(cscx-cotx) dx
=∫ 1/(cscx-cotx) d(cscx-cotx)
=ln|cscx-cotx| +c
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
∫ cscx dx=ln|cscx-cotx| +c
∫ secx dx=ln|secx+tanx| +c
∫ dx/sinx
=∫ cscx dx
=∫ cscx (cscx-cotx)/(cscx-cotx) dx
=∫ 1/(cscx-cotx) d(cscx-cotx)
=ln|cscx-cotx| +c,c为常数
=-1/2∫d(cosx)/(1+cosx)-1/2∫d(cosx)/(1-cosx)=-1/2ln(1+cosx)+1/2ln(1-cosx)+C
=1/2ln(1-cosx)/(1+cosx)+C