lnx/(1+x)^2的不定积分
具体过程如下:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
扩展资料:
如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。
如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
参考资料来源:百度百科——不定积分
lnx/(1+x)^2的不定积分结果为-lnx/(1+x)+ln|x/(1+x)|+C。
解:∫lnx/(1+x)^2
=-∫lnxd(1/(1+x))
=-lnx/(1+x)+∫1/(1+x)d(lnx)
=-lnx/(1+x)+∫1/((1+x)*x)dx
=-lnx/(1+x)+∫(1/x-1/(1+x))dx
=-lnx/(1+x)+∫(1/x)dx-∫1/(1+x)dx
=-lnx/(1+x)+ln|x|-ln|1+x|+C
=-lnx/(1+x)+ln|x/(1+x)|+C
扩展资料:
1、分部积分法的形式
(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。
例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx
(2)通过对u(x)求微分后使其类型与v(x)的类型相同或相近。
例:∫xarctanxdx=∫arctanxd(1/2x^2)
=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx
(3)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。
例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx
=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx
=e^x*sinx-e^x*cosx-∫e^x*sinxdx
则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得
∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C
2、不定积分凑微分法
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+C
直接利用积分公式求出不定积分。
3、常用的不定积分公式
∫1dx=x+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C
参考资料来源:百度百科-不定积分