已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足向量|MN|×向量|MP|+向量M

已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足向量|MN|×向量|MP|+向量MN×向量NP=0,求动点P的轨迹方程?... 已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足向量|MN|×向量|MP|+向量MN×向量NP=0,求动点P的轨迹方程? 展开
刘贺great
2013-04-18 · TA获得超过1.6万个赞
知道大有可为答主
回答量:3829
采纳率:100%
帮助的人:1881万
展开全部
你确定条件是:|MN|*|MP|+MN·NP=0?
设P点为(x,y),则:MN=(4,0),MP=OP-OM=(x,y)-(-2,0)=(x+2,y)
即:|MP|=sqrt((x+2)^2+y^2),NP=OP-ON=(x,y)-(2,0)=(x-2,y)
故:4sqrt((x+2)^2+y^2)+(4,0)·(x-2,y)=4sqrt((x+2)^2+y^2)+4(x-2)=0
即:(x+2)^2+y^2=(x-2)^2,即:y^2=-8x
追问
sqrt什么意思呢
答案是对的
追答
二次跟下,就是根号
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式