离散数学求公式(┐P∨Q)∧(P→R)的主析取范式和主合取范式 求步骤 急急急急

 我来答
zzllrr小乐
高粉答主

2015-09-10 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78777

向TA提问 私信TA
展开全部

步骤如下:


  1. (¬P∨Q)∧(P→R)

  2. ⇔(¬P∨Q)∧(¬P∨R) 变成 合取析取

  3. ⇔(¬P∨Q∨(¬R∧R))∧(¬P∨(¬Q∧Q)∨R) 补项

  4. ⇔((¬P∨Q∨¬R)∧(¬P∨Q∨R))∧(¬P∨(¬Q∧Q)∨R) 分配律2

  5. ⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨(¬Q∧Q)∨R) 结合律

  6. ⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧((¬P∨¬Q∨R)∧(¬P∨Q∨R)) 分配律2

  7. ⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R) 结合律

  8. ⇔(¬P∨Q∨¬R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R) 等幂律

  9. 得到主合取范式


再检查遗漏的极大项

  1. ⇔M₄∧M₅∧M₆⇔∏(4,5,6)

  2. ⇔¬∏(0,1,2,3,7)⇔∑(0,1,2,3,7)⇔m₀∨m₁∨m₂∨m₃∨m₇

  3. ⇔¬(P∨Q∨R)∨¬(P∨Q∨¬R)∨¬(P∨¬Q∨R)∨¬(P∨¬Q∨¬R)∨¬(¬P∨¬Q∨¬R) 德摩根定律

  4. ⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧Q∧R) 德摩根定律

  5. 得到主析取范式

lily20020126
2013-04-20
知道答主
回答量:12
采纳率:0%
帮助的人:6.5万
展开全部
P Q R P∧Q ┐P∧R (P∧Q)∨(┐P∧R)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 0 1
原公式的主析取范式:(┐P∧┐Q∧R)V(┐P∧Q∧R)V(P∧Q∧┐R)V(P∧Q∧R)
主合取范式:(┐PVQV┐R)∧(┐PVQVR)∧(PV┐QVR)∧(PVQVR)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式