离散数学求公式(┐P∨Q)∧(P→R)的主析取范式和主合取范式 求步骤 急急急急
2个回答
展开全部
步骤如下:
(¬P∨Q)∧(P→R)
⇔(¬P∨Q)∧(¬P∨R) 变成 合取析取
⇔(¬P∨Q∨(¬R∧R))∧(¬P∨(¬Q∧Q)∨R) 补项
⇔((¬P∨Q∨¬R)∧(¬P∨Q∨R))∧(¬P∨(¬Q∧Q)∨R) 分配律2
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨(¬Q∧Q)∨R) 结合律
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧((¬P∨¬Q∨R)∧(¬P∨Q∨R)) 分配律2
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R) 结合律
⇔(¬P∨Q∨¬R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R) 等幂律
得到主合取范式
再检查遗漏的极大项
⇔M₄∧M₅∧M₆⇔∏(4,5,6)
⇔¬∏(0,1,2,3,7)⇔∑(0,1,2,3,7)⇔m₀∨m₁∨m₂∨m₃∨m₇
⇔¬(P∨Q∨R)∨¬(P∨Q∨¬R)∨¬(P∨¬Q∨R)∨¬(P∨¬Q∨¬R)∨¬(¬P∨¬Q∨¬R) 德摩根定律
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧Q∧R) 德摩根定律
得到主析取范式
展开全部
P Q R P∧Q ┐P∧R (P∧Q)∨(┐P∧R)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 0 1
原公式的主析取范式:(┐P∧┐Q∧R)V(┐P∧Q∧R)V(P∧Q∧┐R)V(P∧Q∧R)
主合取范式:(┐PVQV┐R)∧(┐PVQVR)∧(PV┐QVR)∧(PVQVR)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 0 1
原公式的主析取范式:(┐P∧┐Q∧R)V(┐P∧Q∧R)V(P∧Q∧┐R)V(P∧Q∧R)
主合取范式:(┐PVQV┐R)∧(┐PVQVR)∧(PV┐QVR)∧(PVQVR)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询