
设a=10^9+38^3-2,证明a是37的倍数???怎么做写出步骤
展开全部
a=10^9+(1+37)^3-2
=10^9+(1+3*37+3*37^2+37^3)-2
=10^9-1+3*37+3*37^2+37^3
=1000^3-1+3*37+3*37^2+37^3
=(1000-1)(1000^2+1000+1)+3*37+3*37^2+37^3
=999*(1000^2+1000+1)+3*37+3*37^2+37^3
=9*3*37*(1000^2+1000+1)+3*37+3*37^2+37^3
=10^9+(1+3*37+3*37^2+37^3)-2
=10^9-1+3*37+3*37^2+37^3
=1000^3-1+3*37+3*37^2+37^3
=(1000-1)(1000^2+1000+1)+3*37+3*37^2+37^3
=999*(1000^2+1000+1)+3*37+3*37^2+37^3
=9*3*37*(1000^2+1000+1)+3*37+3*37^2+37^3

2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询