1个回答
展开全部
f(x)=sinx+cosx
=√2(√2/2sinx+√2/2cosx)
=√2sin(x+π/4)
∵-π/2<=x<=π/2
∴-π/4<=x+π/4<=3π/4
∴当x+π/4=π/2时有最大值√2
当x+π/4=-π/4时有最小值√2*(-√2/2)=-1
=√2(√2/2sinx+√2/2cosx)
=√2sin(x+π/4)
∵-π/2<=x<=π/2
∴-π/4<=x+π/4<=3π/4
∴当x+π/4=π/2时有最大值√2
当x+π/4=-π/4时有最小值√2*(-√2/2)=-1
更多追问追答
追问
抱歉,我需要运用导数的方法解决
追答
早说嘛,
f(x)=sinx+cosx
f'(x)=cosx-sinx=0 (令它=0,找极值点)
√2/2cosx-√2/2sinx=0
cos(x+π/4)=0
∵-π/2<=x<=π/2
∴-π/4<=x+π/4<=3π/4
∴当x+π/4=π/2为极值点
x=π/4
当 -π/4<=x+π/4<=π/2时cos为增区间
当 π/2<=x+π/4<=3π/4时 cos为减区间
∴最大值是f(π/4)=√2/2+√2/2=√2
∵f(-π/2)=sin(-π/2)+cos(-π/2)=-1
f(π/2)=sinπ/2+cosπ/2=1
∴最小值是f(-π/2)=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询