
\已知,x^2/x^2-2=1/1-根号2,求(1/1-x-1/1+x)÷(x/x^2-1+x)的值.
1个回答
展开全部
x^2/(x^2-2)=1/(1-根号2)=根号2+1
(x^2-2)/x^2=1-根号2
1-2/x^2=1-根号2
2/X^2=根号2
X^2=根号2
原式 =[1/(1-x)-1/(1+x)]/[x/(x^2-1)+x]
=[(1+x-1+x)/(1-x)(1+x)]/[x(1+x^2-1)/(x^2-1)]
=2x/(1-x^2)*(x^2-1)/(x^3)
=-2/x^2
=-2/根号2
=-根号2
(x^2-2)/x^2=1-根号2
1-2/x^2=1-根号2
2/X^2=根号2
X^2=根号2
原式 =[1/(1-x)-1/(1+x)]/[x/(x^2-1)+x]
=[(1+x-1+x)/(1-x)(1+x)]/[x(1+x^2-1)/(x^2-1)]
=2x/(1-x^2)*(x^2-1)/(x^3)
=-2/x^2
=-2/根号2
=-根号2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询