已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.

sp995995
2013-04-22 · TA获得超过1.7万个赞
知道大有可为答主
回答量:6587
采纳率:84%
帮助的人:2135万
展开全部
(1)证明:∵∠BAC=90°,BD⊥AE,CE⊥AE
∴∠ABD+∠BAD=90°,∠BAD+∠EAC=90,
∴∠ABD=∠EAC
在Rt△BDA和Rt△AEC中,
∠ABD=∠EAC,∠ABD=∠EAC=90°,AB=AC,
∴Rt△BAD≌Rt△AEC(AAS),
∴BD=AE
(2)解:猜想BD=CE+DE.
证明:∵Rt△BAD≌Rt△AEC
∴AD=CE,BD=AE
∴BD=AE=AD+DE=CE+DE
(3)解:BD=DE-CE.
理由:∵∠BAC=90°,BD⊥AE,CE⊥AE
∴∠ABD+∠BAD=90°∠BAD+∠EAC=90°,
∴∠ABD=∠EAC,
在Rt△BDA和Rt△AEC中,∠ABD=∠EAC,AB=AC
∴Rt△BAD≌Rt△AEC,
∴BD=AE,AD=CE,
∴BD=AE=DE-AD=DE-CE.
手机用户66088
2013-04-22 · 超过10用户采纳过TA的回答
知道答主
回答量:51
采纳率:0%
帮助的人:32.9万
展开全部
求什么呀,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式