已知f(x)=-2asin(2x+π/6)+2a+b,x∈[π/4,3π/4],是否存在常数a,b∈
已知f(x)=-2asin(2x+π/6)+2a+b,x∈[π/4,3π/4],是否存在常数a,b∈Z,使得f(x)的值域为[-3,(√3)-1]?若存在,求出a,b的值...
已知f(x)=-2asin(2x+π/6)+2a+b,x∈[π/4,3π/4],是否存在常数a,b∈Z,使得f(x)的值域为[-3,(√3)-1]?若存在,求出a,b的值;若不存在,说明理由。[在线等,急求!!!]
展开
1个回答
展开全部
π/4≤X≤3π/4
π/2≤2X≤3π/2
2π/3=π/2+π/6≤2x+π/6≤3π/2+π/6=5π/3
-2≤2sin(2x+π/6)≤√3
当a>0时,2a≥-2asin(2x+π/6)≥-√3a
2a+2a+b≥-2asin(2x+π/6)+2a+b≥-√3a+2a+b
所以4a+b=√3-1, -√3a+2a+b=-3
因为a,b∈Z,所以方程组无解
当a<0,时
2a≤-2asin(2x+π/6)≤-√3a
2a+b+2a≤-2asin(2x+π/6)≤-√3a+2a+b
4a+b=-3----(1)
-√3a+2a+b=√3-1-----(2)
由(1)(2)方程组解得:a=-1,b=1
π/2≤2X≤3π/2
2π/3=π/2+π/6≤2x+π/6≤3π/2+π/6=5π/3
-2≤2sin(2x+π/6)≤√3
当a>0时,2a≥-2asin(2x+π/6)≥-√3a
2a+2a+b≥-2asin(2x+π/6)+2a+b≥-√3a+2a+b
所以4a+b=√3-1, -√3a+2a+b=-3
因为a,b∈Z,所以方程组无解
当a<0,时
2a≤-2asin(2x+π/6)≤-√3a
2a+b+2a≤-2asin(2x+π/6)≤-√3a+2a+b
4a+b=-3----(1)
-√3a+2a+b=√3-1-----(2)
由(1)(2)方程组解得:a=-1,b=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询