已知M是一元二次方程X^2+3X-1=0的实数根,那么代数式(M-3)/(3M^2-6M)/(M+2-5/((m-2))的值是多少
已知M是一元二次方程X^2+3X-1=0的实数根,那么代数式(M-3)/(3M^2-6M)/(M+2-5/((m-2))的值是多少会带根号...
已知M是一元二次方程X^2+3X-1=0的实数根,那么代数式(M-3)/(3M^2-6M)/(M+2-5/((m-2))的值是多少
会带根号 展开
会带根号 展开
1个回答
2013-04-24
展开全部
X^2+3X-1=0,M^2+3M=1
(M-3)/(3M^2-6M)/(M+2-5/((M-2))
=(M-3)/[3M(M-2)]/[(M^2-9)/(M-2)]
=(M-3)/[3M(M-2)]*[(M-2)/(M^2-9)]
=1/3M(M+3)
=1/3(M^2+3M)
=1/3
(M-3)/(3M^2-6M)/(M+2-5/((M-2))
=(M-3)/[3M(M-2)]/[(M^2-9)/(M-2)]
=(M-3)/[3M(M-2)]*[(M-2)/(M^2-9)]
=1/3M(M+3)
=1/3(M^2+3M)
=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询