二次函数的三种表达式怎么应用在题中目
2个回答
展开全部
二次函数的三种表达式
a、一般式:y=ax²+bx+c(a,b,c为常数,a≠0)
b、顶点式:y=a(x-h)²+k [抛物线的顶点P(h,k)]
c、交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2
,0)的抛物线]
1.图象开口方向
二次函数的图象是一条抛物线,当a>0时,抛物线向上开口;当a<0时,
抛物线向下开口,|a|越大,则抛物线的开口越小
2.抛物线的性质
抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
3.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b²)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
望采纳!
a、一般式:y=ax²+bx+c(a,b,c为常数,a≠0)
b、顶点式:y=a(x-h)²+k [抛物线的顶点P(h,k)]
c、交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2
,0)的抛物线]
1.图象开口方向
二次函数的图象是一条抛物线,当a>0时,抛物线向上开口;当a<0时,
抛物线向下开口,|a|越大,则抛物线的开口越小
2.抛物线的性质
抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
3.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b²)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
望采纳!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询