高等数学定积分问题
展开全部
(1)
let dF(x) = (1/√(1+x^3))dx
f(a) = ∫(a->2a) dx/√(1+x^3)
= F(2a)- F(a)
f'(a) = 2F'(2a) - F'(a)
= 2/√(1+8a^3) - 1/√(1+a^3) =0
2√(1+a^3) -√(1+8a^3)=0
4(1+a^3) = 1+8a^3
4a^3 = 3
a= (3/4)^(1/3)
f''((3/4)^(1/3)) <0 ( max)
max ∫(a->2a) dx/√(1+x^3) at a= (3/4)^(1/3)
(2)
?????
(3)
let dF(x) = f(x) dx
∫(0->1) f(tx)dt =x
(1/x) [ F(x)-F(0)] = x
[ F(x)-F(0)] =x^2
f(x) = 2x
let dF(x) = (1/√(1+x^3))dx
f(a) = ∫(a->2a) dx/√(1+x^3)
= F(2a)- F(a)
f'(a) = 2F'(2a) - F'(a)
= 2/√(1+8a^3) - 1/√(1+a^3) =0
2√(1+a^3) -√(1+8a^3)=0
4(1+a^3) = 1+8a^3
4a^3 = 3
a= (3/4)^(1/3)
f''((3/4)^(1/3)) <0 ( max)
max ∫(a->2a) dx/√(1+x^3) at a= (3/4)^(1/3)
(2)
?????
(3)
let dF(x) = f(x) dx
∫(0->1) f(tx)dt =x
(1/x) [ F(x)-F(0)] = x
[ F(x)-F(0)] =x^2
f(x) = 2x
更多追问追答
追问
(2)题连续函数是F(X),且F(x)=.......
追答
F(x) =∫(2->t)dy∫(y->t)f(x) dx
∫(2->t)dy∫(y->t)f(x) dx 不是x的函数
∫(2->t)dy∫(y->t)f(x) dx 是t或者y的函数
如果是这样
F(x) = ∫(2->t)dy∫(y->t)f(x) dx
F'(x) = 0
F'(2) =0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |