已知,如图,四边形ABCD中,∠ABC=∠ADC=90°,E是AC的中点,EF平分∠BED交BD于点F

已知,如图,四边形ABCD中,∠ABC=∠ADC=90°,E是AC的中点,EF平分∠BED交BD于点F,猜想EF与BD的关系,试证明你的想法。... 已知,如图,四边形ABCD中,∠ABC=∠ADC=90°,E是AC的中点,EF平分∠BED交BD于点F,猜想EF与BD的关系,试证明你的想法。 展开
jly041218
高粉答主

2013-04-27 · 每个回答都超有意思的
知道顶级答主
回答量:7.2万
采纳率:82%
帮助的人:2亿
展开全部
EF⊥BD
∵∠ABC=∠ADC=90°,E是AC的中点

∴BE=½AC=DE

∵EF平分∠BED交BD于点F

∴EF⊥BD
追问
可以详细一点吗?看不懂
追答
EF⊥BD
理由如下
∵∠ABC=∠ADC=90°,E是AC的中点
∴BE=½AC=DE(直角三角形斜边上的中线等于斜边的一半)
∵EF平分∠BED交BD于点F
∴EF⊥BD(等腰三角形三线合一性质)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式