3个回答
2013-04-28 · 知道合伙人教育行家
wangcai3882
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:20214
获赞数:108203
本人擅长中学阶段数、理、化、生等理科知识,尤其是数学。高中时曾参加全国数学竞赛并获奖,期望能为你答疑
向TA提问 私信TA
关注
展开全部
解:
根据二倍角公式cos2a=2cos²a-1=1-2sin²a得
f(x)=2-(√3sinx-cosx)²
=2-(3sin²x+cos²x-2√3sinxcosx)
=2-3sin²x-cos²x+2√3sinxcosx
=2-3(1-cos2x)/2-(1+cos2x)/2+√3sin2x
=2-3/2+3/2*cos2x-1/2-1/2*cos2x+√3sin2x
=cos2x+√3sin2x
=2sin(2x+π/6)
(1)
f(π/3)=2sin(2/3π+π/6)=2*1/2=1
T=2π/2=π
(2)
x∈[-π/6,π/3]带入2x+π/6 得
-π/6 ≤ 2x+π/6 ≤ 5π/6
当2x+π/6=π/2即x=π/6时,sin(2x+π/6)=1,函数取得最大值为2;
当x=-π/6时,sin(2x+π/6)=sin(-π/6)=-1/2,函数取得最大值为-1。
根据二倍角公式cos2a=2cos²a-1=1-2sin²a得
f(x)=2-(√3sinx-cosx)²
=2-(3sin²x+cos²x-2√3sinxcosx)
=2-3sin²x-cos²x+2√3sinxcosx
=2-3(1-cos2x)/2-(1+cos2x)/2+√3sin2x
=2-3/2+3/2*cos2x-1/2-1/2*cos2x+√3sin2x
=cos2x+√3sin2x
=2sin(2x+π/6)
(1)
f(π/3)=2sin(2/3π+π/6)=2*1/2=1
T=2π/2=π
(2)
x∈[-π/6,π/3]带入2x+π/6 得
-π/6 ≤ 2x+π/6 ≤ 5π/6
当2x+π/6=π/2即x=π/6时,sin(2x+π/6)=1,函数取得最大值为2;
当x=-π/6时,sin(2x+π/6)=sin(-π/6)=-1/2,函数取得最大值为-1。
展开全部
解f(x)=2-(√3sinx-cosx)²
=2-[2(√3/2sinx-1/2cosx)]²
=2-4(√3/2sinx-1/2cosx)²
=2-4(cos30°sinx-sin30°cosx)²
=2-4sin²(x-30°)
=2[1-2sin²(x-30°)]
=2cos2(x-30°)
=2cos(2x-π/3)
故f(π/3)=2cos(2*π/3-π/3)=2cos(π/3)=2*1/2=1
周期T=2π/2=π
2由x属于[-π/6,π/3]
即-π/6≤x≤π/3
-π/3≤2x≤2π/3
即-2π/3≤2x-π/3≤π/3
即-1/2≤cos(2x-π/3)≤1
即-1≤2cos(2x-π/3)≤2
即-1≤f(x)≤2
则f(x)的最大值是2,最小值为-1.
=2-[2(√3/2sinx-1/2cosx)]²
=2-4(√3/2sinx-1/2cosx)²
=2-4(cos30°sinx-sin30°cosx)²
=2-4sin²(x-30°)
=2[1-2sin²(x-30°)]
=2cos2(x-30°)
=2cos(2x-π/3)
故f(π/3)=2cos(2*π/3-π/3)=2cos(π/3)=2*1/2=1
周期T=2π/2=π
2由x属于[-π/6,π/3]
即-π/6≤x≤π/3
-π/3≤2x≤2π/3
即-2π/3≤2x-π/3≤π/3
即-1/2≤cos(2x-π/3)≤1
即-1≤2cos(2x-π/3)≤2
即-1≤f(x)≤2
则f(x)的最大值是2,最小值为-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(X)=2-(√3sinx-cosx)²
=2-2(√3/2*sinx-1/2*cosx)²
=2[1-sin²(x-π/6)]
=2cos²(x-π/6)
=cos(2x-π/3)+1
1)
f(π/3)=cosπ/3+1=3/2
2x=2π
最小正周期=π
由x属于[-π/6,π/3]
即-π/6≤x≤π/3
-π/3≤2x≤2π/3
即-2π/3≤2x-π/3≤π/3
即-1/2≤cos(2x-π/3)≤1
即0≤2cos(2x-π/3)≤2
即0≤f(x)≤2
则f(x)的最大值是2,最小值为0
=2-2(√3/2*sinx-1/2*cosx)²
=2[1-sin²(x-π/6)]
=2cos²(x-π/6)
=cos(2x-π/3)+1
1)
f(π/3)=cosπ/3+1=3/2
2x=2π
最小正周期=π
由x属于[-π/6,π/3]
即-π/6≤x≤π/3
-π/3≤2x≤2π/3
即-2π/3≤2x-π/3≤π/3
即-1/2≤cos(2x-π/3)≤1
即0≤2cos(2x-π/3)≤2
即0≤f(x)≤2
则f(x)的最大值是2,最小值为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询