如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD= 二分之一AB,点E、F分别为边BC、AC的中点。求DF=AE
展开全部
连接EF
∵E、F分别为边BC、AC的中点
∴EF是△ABC的中位线
∴EF=1/2AB
EF∥AB
∵AD=1/2AB
∴AD=EF
∵EF∥AD(AB)
∴ADFE是平行四边形
∴DF=AE
∵E、F分别为边BC、AC的中点
∴EF是△ABC的中位线
∴EF=1/2AB
EF∥AB
∵AD=1/2AB
∴AD=EF
∵EF∥AD(AB)
∴ADFE是平行四边形
∴DF=AE
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询