展开全部
∫(0→2π) xcos²x dx
= ∫(0→2π) x • (1 + cos2x)/2 dx
= (1/2)∫(0→2π) x dx + (1/2)∫(0→2π) xcos2x dx
= (1/4)[ x² ]:(0→2π) + (1/4)∫(0→2π) x d(sin2x)
= (1/4)(4π²) + (1/4)xsin2x:(0→2π) - (1/4)∫(0→2π) sin2x dx
= π² + 0 + (1/8)cos2x:(0→2π)
= π² + (1/8)(1 - 1)
= π²
= ∫(0→2π) x • (1 + cos2x)/2 dx
= (1/2)∫(0→2π) x dx + (1/2)∫(0→2π) xcos2x dx
= (1/4)[ x² ]:(0→2π) + (1/4)∫(0→2π) x d(sin2x)
= (1/4)(4π²) + (1/4)xsin2x:(0→2π) - (1/4)∫(0→2π) sin2x dx
= π² + 0 + (1/8)cos2x:(0→2π)
= π² + (1/8)(1 - 1)
= π²
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询