设f(u,v)为二元可微函数,z=f(x^y,y^x),求∂z/∂x,∂z/∂y 5
4个回答
展开全部
z = f(x^y, y^x),记 u = x^y, v = y^x,
则 ∂u/∂x = yx^(y-1), ∂u/∂y = x^ylnx, ∂v/∂x = y^xlny, ∂v/∂y = xy^(x-1).
∂z/∂x = (∂f/∂u)(∂u/∂x) + (∂f/∂v)(∂v/∂x) = yx^(y-1) ∂f/∂u + y^xlny ∂f/∂v
∂z/∂y = (∂f/∂u)(∂u/∂y) + (∂f/∂v)(∂v/∂y) = x^ylnx ∂f/∂u + xy^(x-1) ∂f/∂v
则 ∂u/∂x = yx^(y-1), ∂u/∂y = x^ylnx, ∂v/∂x = y^xlny, ∂v/∂y = xy^(x-1).
∂z/∂x = (∂f/∂u)(∂u/∂x) + (∂f/∂v)(∂v/∂x) = yx^(y-1) ∂f/∂u + y^xlny ∂f/∂v
∂z/∂y = (∂f/∂u)(∂u/∂y) + (∂f/∂v)(∂v/∂y) = x^ylnx ∂f/∂u + xy^(x-1) ∂f/∂v
展开全部
∂z/∂x=∂z/∂f[(∂f/∂x)*y*x^(y-1)+∂f/∂y*y^x*lny]
∂z/∂y=∂z/∂f[(∂f/∂x)*x^y*lnx+∂f/∂y*x*y^(x-1)]
∂z/∂y=∂z/∂f[(∂f/∂x)*x^y*lnx+∂f/∂y*x*y^(x-1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
限定x,y>0啊,
第一个=f1*y*x^(y-1)+f2*logy*y^x
f1,f2在x^y,y^x取值
第一个=f1*y*x^(y-1)+f2*logy*y^x
f1,f2在x^y,y^x取值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询