2个回答
展开全部
普通方法:
L1:y = x、dy = dx
L2:y = 2 - x、dy = - dx
∫L (x² + y²) dx + (x² - y²) dy
= ∫(0→1) 2x² dx + ∫(1→2) [x² + (2 - x)² + (x² - (2 - x)²)(- 1)] dx
= ∫(0→1) 2x² dx + ∫(1→2) 2(x - 2)² dx
= 2/3 + 2/3
= 4/3
格林公式:
补上线段N:y = 0、dy = 0、逆时针、使L围成闭区域D
P = x² + y²、P'y = 2y
Q = x² - y²、Q'x = 2x
∮L (x² + y²) dx + (x² - y²) dy
= ∫∫D (2x - 2y) dxdy
= 2∫(0→1) dy ∫(y→2 - y) (y - x) dx
= 4/3
∫N (x² + y²) dx + (x² - y²) dy = ∫(0→2) x² dx = 8/3
- I(L) + I(N) = ∮(L) <--------------------------┐
- I(L) = 4/3 - 8/3 = - 4/3 |
I(L) = 4/3 |
这里要注意方向变化,I(L)是顺时针(加负号)、I(N)和∮(L)都是逆时针
L1:y = x、dy = dx
L2:y = 2 - x、dy = - dx
∫L (x² + y²) dx + (x² - y²) dy
= ∫(0→1) 2x² dx + ∫(1→2) [x² + (2 - x)² + (x² - (2 - x)²)(- 1)] dx
= ∫(0→1) 2x² dx + ∫(1→2) 2(x - 2)² dx
= 2/3 + 2/3
= 4/3
格林公式:
补上线段N:y = 0、dy = 0、逆时针、使L围成闭区域D
P = x² + y²、P'y = 2y
Q = x² - y²、Q'x = 2x
∮L (x² + y²) dx + (x² - y²) dy
= ∫∫D (2x - 2y) dxdy
= 2∫(0→1) dy ∫(y→2 - y) (y - x) dx
= 4/3
∫N (x² + y²) dx + (x² - y²) dy = ∫(0→2) x² dx = 8/3
- I(L) + I(N) = ∮(L) <--------------------------┐
- I(L) = 4/3 - 8/3 = - 4/3 |
I(L) = 4/3 |
这里要注意方向变化,I(L)是顺时针(加负号)、I(N)和∮(L)都是逆时针
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询